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Scientists and inventors increasingly work in teams, raising funda-
mental questions about the nature of team production and making
individual assessment increasingly difficult. Here we present a
method for describing individual and team citation impact that both
is computationally feasible and can be applied in standard, wide-scale
databases. We track individuals across collaboration networks to
define an individual citation index and examine outcomes when
each individual works alone or in teams. Studying 24 million research
articles and 3.9 million US patents, we find a substantial impact
advantage of teamwork over solo work. However, this advantage
declines as differences between the team members’ individual cita-
tion indices grow. Team impact is predicted more by the lower-
citation rather than the higher-citation team members, typically cen-
tering near the harmonic average of the individual citation indices.
Consistent with this finding, teams tend to assemble among individ-
uals with similar citation impact in all fields of science and patenting.
In assessing individuals, our index, which accounts for each coauthor,
is shown to have substantial advantages over existingmeasures. First,
it more accurately predicts out-of-sample paper and patent outcomes.
Second, it more accurately characterizes which scholars are elected to
the National Academy of Sciences. Overall, the methodology un-
covers universal regularities that inform team organization while also
providing a tool for individual evaluation in the team production era.
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Teams are increasingly prevalent across virtually all fields of
science and patenting (1–4), raising fundamental questions

about the nature of team-based creativity and team assembly and
creating fundamental challenges for individual assessment (5–11).
For example, while Heisenberg developed his uncertainty princi-
ple without building a team and received credit in a straightfor-
ward manner as the solo author, more recent breakthroughs, such
as Milstein and Kohler’s monoclonal antibodies and Faggin, Hoff,
and Mazor’s microprocessor, often come from collaborations that
both combine and obscure individual contributions (2, 4, 5). Here
we investigate two intertwined questions. First, how do individuals
combine to predict team output? Second, how can individual
impact be inferred when people work in teams?
Concretely, consider a paper written by two individuals. At

one extreme, the team outcome could be a max process,
y=maxfalow, ahighg, where y is the success of the joint outcome,
ai is an index characterizing each individual team member,
and ahigh ≥ alow. In this max specification, the joint output is de-
termined by the higher-index individual; for example, perhaps
this individual, by shaping the research question and methods,
drives the ultimate success of the project. By contrast, at the
other extreme, team outcomes could be a min process,
y=minfalow, ahighg, where the joint result is determined by the
lower-index individual. For example, perhaps this team member
creates bottlenecks at certain tasks and determines the ultimate
outcome. Alternatively, the outcome may lie between these max
and min extremes, perhaps as the arithmetic, geometric, or
other mean of the individual indices.
These alternative views have fundamentally different—indeed,

opposite—implications for science. Organizationally, in a max

specification, a team could expect a successful outcome so long as one
person has a high index, and an organization might sprinkle around its
best people to great effect (12–14). However, in a min specification,
the opposite is true. Here the person with the lowest index on a team
would determine the outcome, and the collective output of science
would be greatest not by sprinkling the top people around but rather
through positive assortative matching, where individuals of similar
index measures work together (14–16). Credit considerations in col-
laboration (5, 10, 17, 18) are also germane; in a max specification,
audiences would reward the top author, akin to some versions of the
Matthew effect (5), but in a min specification the joint outcome is
informative for the lowest-index member of the team (17). Of course,
the true relationship may lie between these max and min extremes.
This paper introduces a transparent and computationally

feasible method for informing the relationship between individ-
ual and team outcomes. This descriptive approach is applied
both to reveal central facts about science and invention and to
predict individual and team results. We leverage the generalized
mean (or Hölder mean) to write

y= βn

"
1
n

Xn
i=1

aρi

#1
ρ

, [1]

where y is the outcome and n is the team size. The parameters ai
track individuals across their works to estimate a fixed effect for
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Scientists and inventors increasingly work in teams. We track
millions of individuals across their collaboration networks to
help inform fundamental features of team science and in-
vention and help solve the challenge of assessing individuals in
the team production era. We find that in all fields of science and
patenting, team impact is weighted toward the lower-impact
rather than higher-impact team members, with implications for
the output of specific teams and team assembly. In assessing
individuals, our index substantially outperforms existing mea-
sures, including the h index, when predicting paper and patent
outcomes or when characterizing eminent careers. The findings
provide guidance to research institutions, science funders, and
scientists themselves in predicting team output, forming teams,
and evaluating individual impact.
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individual i on a per-paper (or per-patent) basis. The key team
parameter is ρ, which defines how the individual parameters ai
combine. At the extremes, the Hölder mean allows for the max
ðρ→∞Þ and min ðρ→ −∞Þ functions while also incorporating
other means, including the arithmetic mean ðρ= 1Þ, geometric
mean ðρ= 0Þ, and harmonic mean ðρ=−1Þ as special cases (Fig.
1A). An important intuition is that the person with the lowest
(highest) ai becomes more influential for the joint output as ρ
declines (increases). The arithmetic mean provides the boundary
where each individual is equally important.
In addition, the parameter βn captures impact benefits as-

sociated with teamwork (specifically, for a team of size n),
including advantages of aggregating effort, skill, or marketing,
as well as disadvantages through coordination costs in teams
(1, 2, 4). We normalize the model by setting β1 = 1 for solo-
authored work. This normalization implies that y= ai for solo-
authored work. Thus, the individual index (the estimated ai) is
interpreted as the expected outcome when that person works
alone. Further, taking a team of size n, the magnitude of β̂n is
interpreted as the outcome advantage of teamwork over solo-
work when the individual team members share a common
value of ai.
We estimate this function, by field, in two large datasets. First,

for research articles, we examine all 182 different fields of sci-
ence, engineering, social sciences, and arts and humanities in the
WOS that have at least 500 papers in the field. Second, for
patents, we examine all 384 different primary technology classes
of the US Patent and Trademark Office (USPTO) that have at
least 500 patents in the class. The estimates further deploy name
disambiguation to identify a given individual across a body of
their work. For the WOS, we use Thomson Reuters’ name-
disambiguated author dataset (19–21). For the USPTO data,
we use Li et al.’s (22, 23) name-disambiguated inventor dataset.
We further restrict the data to the 97% of papers and 99% of
patents with team sizes of eight or fewer members (24). The
team outcome measure in our main analyses is the number of

citations received by the paper or patent in the first 8 y after
publication (1). We consider robustness to alternative outcome
measures in the SI Appendix, which also provides further details
about these datasets. Our final estimation samples include 24
million research articles written by 13 million individuals (WOS,
1945–2005 period) and 3.9 million patents produced by 2.6
million individuals (USPTO, 1975–2006 period).

Results
Fig. 1B presents the distribution of the estimated ρ̂ across fields.
We see substantial similarity in the science and patenting do-
mains. First, in all fields of science and patenting, we find ρ̂< 1.
This finding indicates that while everyone on the team has influ-
ence, team output is weighted toward the lower-index rather than
the higher-index members of the team. This finding is robust to
various computational checks (SI Appendix) and consistent with
raw data analysis as we will show below. The generality of this
finding—appearing across diverse fields of sciences, engineering,
social sciences, and disparate technology areas of invention, many
of which feature different norms and institutions—indicates a
profound regularity to team-based research outcomes. Second,
we see that the modal field in both the science and patenting
domains centers below the geometric average, with median
values near the harmonic average (ρ̂median =−1.49 for paper
fields and ρ̂median =−0.95 for patent fields). Third, the distri-
bution is asymmetric toward lower ρ̂, with a substantial mass of
fields below the harmonic average and a long left tail stretching
toward the min specification.
Fig. 1C presents the distributions of β̂2 through β̂5 across fields

for the Web of Science (WOS), and Fig. 1D presents these dis-
tributions for patents. Consistent with literature showing an
impact advantage of teams over solo authors in raw data (1, 2,
25), we find that these team-impact parameters are large on
average. Focusing on two-person teams, we see that β̂2 > 1 for
99% of WOS fields and for 94% of patenting fields. The median

Fig. 1. The generalized mean. (A) An example of the generalized mean function for two individuals. (B) The distribution of the generalized mean parameter
ρ̂ across Web of Science fields (red) and patenting fields (black). (C) The distributions of the team impact parameters ðβ̂2, . . . , β̂5Þ across Web of Science fields.
(D) The distributions of the team impact parameters ðβ̂2, . . . , β̂5Þ across patenting fields.
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value is β̂2 = 2.05 for papers and β̂2 = 1.44 for patents, which rises
further for larger teams, with some evidence that the teamwork
advantage flattens for team sizes above 4. Notably, these findings
indicate a team impact advantage, even when controlling for
individual citation impact measures. Thus, the team advantage
seen in prior literature (1, 2, 25) is not simply about higher-
citation people tending to work in teams but rather appears
conditional on the citation impact of the individual team mem-
bers (10). SI Appendix, Tables S1 and S2, provides the estimated
ρ̂ and β̂2 through β̂5 for each field of science and patenting.
We thus see two offsetting features in team outcomes. There

tends to be an impact advantage of teamwork over solo work
ðβ̂n > 1Þ, but this advantage declines as the gap between the team
members’ individual citation indices grows ðρ̂< 1Þ. On net, be-
cause the β̂n values tend to be substantially greater than 1,
teamwork tends to predict higher impact so long as the gap be-
tween the individuals is not itself substantial. Thus, individuals
with different citation indices can still see higher impact when
working together than working alone. We further find a negative
relationship between a field’s ρ̂ and β̂2 (SI Appendix, Table S6
and Figs. S1 and S2). This relationship is consistent with a

division of labor interpretation (4, 7, 25) where specialization
may create substantial teamwork advantages (higher β̂2) but also
accentuate bottlenecks in production (lower ρ̂).
To develop further intuition for these findings and visually

examine the fit of the model, we consider different pairings of
individuals in two-person teams. We examine the ratio

R=
y

1
2

�
alow + ahigh

�, [2]

where y is the team-based outcome for two individuals and alow
and ahigh are their individual citation indices. Conceptually, R= 1
occurs when the team-based outcome is equivalent to the simple
arithmetic average of the individual indices, while Rwill be greater
(lower) than 1 if the team-based outcome outperforms (underper-
forms) the arithmetic average of the individual citation indices.
We first examine raw data, presenting a model-free analog of

R. Here we measure y as the observed citation impact of the dual-
authored paper and measure each ai using each individual’s solo-
authored work and taking the arithmetic mean citation impact of
that work. For the modeled version of R, we instead take

Fig. 2. Team impact. We examine different pairings
of individuals in two-person teams. (A) The raw data
(blue) and the model prediction (red) for the Web of
Science. (B) The raw data (blue) and the model pre-
diction (red) for US patents. The x axis is the dif-
ference in individual citation impact, ahigh − alow,
between the two authors. The y axis is the normal-
ized team outcome, measured as the ratio of the
team citation outcome to the arithmetic mean of the
team members’ individual citation outcomes (see
text). We see that the team impact advantage is
large when the team members have similar individ-
ual impact measures but declines as the difference in
individual impact widens within the team.

Fig. 3. Team assembly. The tendency for positive
assortative matching on individual citation impact
for (A) dual-authored papers and (B) dual-inventor
patents. Matching tendencies between individuals
are presented according to their solo outcomes, cal-
culated based on each team member’s solo works. For
each given pairing of individuals, the plotted values
are the amount by which the ratio of the observed
matching frequency to the frequency expected by
chance exceeds 1. The distribution of the mean trace
(m) in the collaboration matrix when each field is
analyzed separately for (C) papers and (D) patents.
Consistent with ρ̂< 1, we see a tendency toward pos-
itive assortative matching, which holds across all fields
in both domains.
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y= β̂2

h
1
2 ðâρ̂low + âρ̂highÞ

i1=ρ̂
, where ρ̂ and β̂2 are the model estimates

for the relevant field and âlow and âhigh are these individuals’
model-estimated indices using all our data.
Fig. 2A shows raw data (blue line) and the model prediction

(red line) for the WOS. Fig. 2B provides the same comparison
for patents. In the figures, the vertical axis presents the moving
average of R across all papers or patents with a given difference
between the individual team members, ahigh − alow. We see that
the model fits the raw data well. This visualization also reveals
key intuition and implications. Namely, teams can have a large
advantage over solo work, yet differences in individual impact
indices within the team reduce this team advantage. Consider
Fig. 2 A or B where the team members have the same index
measure ðahigh = alowÞ. Here the dual-authored output has a ci-
tation advantage substantially greater than what these individuals
achieve alone. The raw data analog here corresponds directly to the
model’s estimate of β2. However, as the gap between the individual
impact indices widens, the impact advantage of dual-authored pa-
pers declines. This decline is consistent with ρ< 1, so that the lower
index team member dominates in determining the outcome. Had
the team outcome been dominated by the higher index team
member, then the raw data would slope upward in the figure
(which would be consistent with ρ> 1). Instead, as we see visually,

heterogeneity in individual citation indices is impact-reducing. In
fact, although the team advantage is sustained over fairly sub-
stantial differences in individual indices, once the differences in
individual indices are large enough, teamwork is no longer more
impactful as the organizational form. Overall, we see that the es-
timated team model (1) fits the shape of the raw data closely and
that the impact advantages associated with teamwork are dissipated
as the citation impact differences between team members grow.
Our next and related results consider team assembly. An or-

ganizational implication of ρ< 1 is that heterogeneity of indi-
vidual impact indices tends to reduce joint impact. From this
perspective, research organizations would want to match people
with similar indices (i.e., positive assortative matching) to max-
imize total research impact (15, 26, 27). Such sorting has impli-
cations for team assembly by individuals and institutions, with
potentially wide implications across science and invention given
the generality of ρ< 1 (12, 28). Our next analyses therefore ex-
amine whether teams do indeed assemble to match on individual
indices, consistent with our estimates of ρ.
Fig. 3 A and B focus on two-person teams. As for the raw data

analysis in Fig. 2, we measure an individual’s impact purely using
their solo-authored work, producing an individual-level estimate
that is independent of their coauthors. We then ask who works
with whom. We present the ratio of (i) the observed frequency of
two-person pairings to (ii) the frequency expected by chance,

Fig. 4. Individual citation index. (A) The distribu-
tions of the individual citation index ðâiÞ across Web
of Science fields (red) and patenting fields (black).
For paper or patent outcomes, the prediction of the
citation impact for out-of-sample (B) solo-authored
papers or (C) solo-invented patents. Predictive ac-
curacy is measured in regressions, comparing the
predictive capacity using âi versus alternative mea-
sures (see text). The x axis presents the regression R2

for a given field, and the y axis is the cumulative
distribution across all fields. We see that âi provides
substantially more accurate predictions of out-of-
sample citation outcomes compared with standard
measures. For individual career outcomes, we rank
each NAS member among that individual’s corre-
sponding cohort. (D) NAS members ranked by âi
(y axis) and publication count (x axis), with median
ranks indicated by dashed lines. (E) Median rank for
NAS members using alternative career metrics (see
text). We see that âi more accurately characterizes
NAS members as high-rank individuals compared with
standard career measures, including the h index.
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drawing pairs of these individuals at random. We group individ-
uals by mean citations to their solo work, rounded to the nearest
integer. Fig. 3A shows a tendency toward assortative matching in
the WOS, and Fig. 3B shows a similar tendency in patenting.
Namely, collaborations are more frequent than expected by
chance where ahigh = alow. Meanwhile, collaborations between in-
dividuals with different impact measures become increasingly
unlikely as these differences become large.
We further deploy this analysis for each field separately within

each domain. As a summary statistic, we examine the mean ratio
of observed to expected frequencies where ahigh = alow (i.e., we take
the mean of the diagonal terms in matching matrices like Fig. 3 A
and B but now analyzed by field). Fig. 3 C and D presents the
distribution across fields for papers and patenting. In all fields, we
see this mean ratio is greater than 1, so that positive assortative
matching is a universal tendency. This tendency is consistent with
the organizational implications of ρ̂< 1. At the same time, teams
may assemble this way for many reasons; for example, individuals
with similar citation indices may sort into the same organizations
or narrow subfields, which in turn facilitate their collaboration.
Our second group of results focuses on the individual citation

index. The distribution of the individual index is right-skewed (Fig.
4A). These distributions are close to lognormal (SI Appendix, Fig.
S3), which is consistent with citation distributions (29). The median
individual citation index measure is ai = 1.32 (papers) and ai = 1.05
(patents), while the 95th percentile individual shows ai = 23.07
(papers) and ai = 19.81 (patents). Interestingly, we see a similar
distributional shape in both the paper and patenting domains.
Notably, each individual citation index estimate has been de-

termined accounting for the citation behavior of an individual’s
coauthors (and, more distantly, the citation behavior of everyone
else in an individual’s broader collaboration network). More-
over, these individual estimates are determined in light of the
team-production parameters. An important implication of ρ< 1
is that the lower-ranked author is relatively important to the
team-based outcome. Team-based outcomes will thus tend to be
more informative about, and credit will accrue toward, the lower-
index members of the team. By contrast, current popular
methodologies for evaluating individuals (1) typically either are
team blind (e.g., counting an individual’s citations with no ad-
justment for team size, as in Google Scholar) or take a fractional
approach (e.g., dividing citations by the number of coauthors),
and promotion committees and funding panels are known to
utilize such methods in evaluating individuals (30, 31) despite
evidence that these may be poor predictors (32).
To examine the accuracy of the individual index estimates, âi,

we consider their capacity to predict outcomes for out-of-sample
papers and patents. Recall that âi tells us the citation impact we
expect for a paper or patent when the individual is a solo author
or inventor. We run our estimations again for 100 WOS fields
and 100 USPTO technology classes but leaving out, at random,
one output from each individual. We then predict the outcome,
y, for the paper or patent that was dropped. Further, we compare
the predictive capacity of âi against alternative, commonly used
individual metrics (33), including (i) mean citations to the indi-
vidual’s works (“all,” with no adjustment for the number of
collaborators), (ii) mean citations per collaborator to the indi-
vidual’s works (“pp,” with citations to each work are divided by
its number of collaborators), and (iii) mean citations for the
individual’s solo works only (“solo”). A wide range of additional
measures are analyzed in the SI Appendix, Tables S7 and S8. To
measure prediction success, we run regressions by field, where
the dependent variable is the citation impact of the out-of-
sample work and the regressor is the predictive measure we
are testing. We take the R2 of each regression to capture good-
ness of fit. The SI Appendix provides further detail on methods.

Fig. 4B examines predictive success for out-of-sample solo-
authored papers. Because these are solo-authored papers, the
model prediction is yi = âi, thus providing a focused test of the
individual parameters. The figure presents the cumulative dis-
tribution of R2 (across fields) for âi and the common approaches
i–iii. We see that the âi estimates tend to provide substantially
higher R2 than the other metrics do in predicting out-of-sample
outcomes. Notably, the model-estimated individual indices do
better even than a simple average of the individuals’ solo-authored
works. The advantage of âi comes because it is estimated using all
of the individual’s papers, which, although many involve team-
authorship, help pin-down the measure. Fig. 4C shows that the
estimates âi similarly outperform the commonly used metrics
when examining the patenting sphere. The SI Appendix, Table S8,
shows that âi similarly outperforms alternative metrics collected in
(33), including numerous variants based on author order.
SI Appendix, Fig. S4, further considers out-of-sample pre-

diction for works with two or three collaborators. Here the
model prediction is based on the âi for individuals in the team
and the relevant β̂n and ρ̂ parameters for the field (estimated in
samples where we have left out the papers or patents in the
prediction set). The model prediction is then compared with
predictions based on the popular constructs i–iii above. See SI
Appendix for further discussion of methods. We again find large
advantages of the model estimates in predicting out-of-sample
outcomes, compared with these other measures. Overall, these
findings suggest that our methodology, which can be applied in
standard databases, can better predict outcomes both when in-
dividuals work alone and when they work in teams.
Our final results consider career outcomes. Here we consider an

entire body of an individuals’ work. Standard career metrics, such
as the h index (34), incorporate paper impact measures and paper
counts. In our context, the estimated âi provides a per-paper im-
pact measure for an individual, and we further incorporate pub-
lication volume, vi, counting the papers the individual has joined in
producing. As an outcome, we consider election to the National
Academy of Sciences (NAS). We examine how NAS members
rank among all other scholars in their cohort, defined as all in-
dividuals who share the same initial publication year and field (see
SI Appendix, Tables S9 and S10, for data detail). Fig. 4D presents
the ranks of âi (vertical axis) and vi (horizontal axis) for individuals
elected to the NAS. NAS members rank at the 97th percentile of
the âi distribution and the 98th percentile of the vi distribution,
comparing against other scientists in their cohort.
How do these measures compare with standard career met-

rics? Prominent career metrics include (i) the h index (34), (ii)
total citations received, and (iii) the i10 index, which counts an
individual’s papers with at least 10 citations. While these mea-
sures (all featured by Google Scholar) are team blind, other
measures attempt to adjust for teamwork, including adjustments
for the number of authors or author position (33). To assess
these different approaches, we again rank NAS members against
the other scientists in their field and cohort but now using these
alternative metrics. Fig. 4E presents the median rank of indi-
viduals elected to the NAS for prominent alternatives. Addi-
tional comparisons are presented in the SI Appendix, Table S11.
Using purely the per-paper impact measure (Fig. 4 E, Top) we
see that ranking individuals based on âi more accurately charac-
terizes NAS members than alternative measures. Additionally,
incorporating publication counts (Fig. 4 E, Bottom) further im-
proves ranks. The âi-based rank continues to outperform. Notably,
it proves far more accurate in characterizing NAS members than
the h index. By contrast, total citations (“all”) and equal sharing of
citations per team member (“pp”) do quite well (if not as well as
using âi). This finding is consistent with the positive assortative
matching we see above, where the tendency to work with teammates
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of similar individual citation indices can make equal credit per author
systems relatively useful in ranking individuals.

Conclusion
We have presented a computationally feasible method for analyz-
ing team and individual outcomes and deployed this methodology
across large repositories of papers and patents. The analysis reveals
universal patterns about team science and invention while pro-
viding a tool for estimating individual impact and predicting out-
comes. The descriptive regularities suggest that team-based science
and patenting most typically centers near the harmonic average of
the team members’ individual citation indices. These findings imply
that team output is predicted more by the lower-index rather than
the higher-index members of the team. This remarkable generality
is further consistent with an observed tendency for team assembly
among individuals with similar citation indices, which appears
across all fields. Meanwhile, the individual index developed here is
shown to outperform other metrics in predicting out-of-sample
paper or patent outcomes and in characterizing eminent careers.
Further work can extend and refine this methodology and assess

mechanisms. While our method, based on an individual fixed ef-
fect, is computationally feasible and can be deployed in available,
wide-scale databases, in the context of richer data, extended
methods might explore specific team assembly and production
processes (4, 7, 10). Assessing choice in team assembly, sorting of
ideas across teams, credit concerns, and effort allocation in idea
production and marketing are important areas for future work.
Causal research designs, including field and laboratory experi-
ments, may allow close observation and isolation of specific
mechanisms to help unpack the descriptive and predictive regu-
larities unveiled here. In science fields that use author order (9,
35), one could further refine the methodology to study hierar-
chical roles (14), although our methodology already appears to
outperform assessments that use author order (SI Appendix, Table
S8). More generally, institutional features, such as the rise of
postdoctoral positions and shifting funding landscapes, may interface

with these findings, suggesting additionally important and policy-
relevant avenues for future work. One may also extend this meth-
odology by using alternative measures, beyond citation measures, to
characterize outcomes, and by investigating teams in additional
contexts. From entrepreneurship to songwriting, from surgery to
sports, team assembly, team outcomes, and individual assessment
are first-order concerns for the institutions that support teams and
for the individuals themselves (13, 14, 36, 37).

Methods
The estimation produces two sets of parameters. First, we compute field-specific

team-outcome parameters, ρ̂ and β̂2, . . . , β̂n. Second, we produce the individual
index, âi, for every individual in the field, which can be hundreds of thousands of
people. Because our outcome measure is the citations received by a given work,
the estimate âi is interpreted as an individual citation index. It represents the
expected citation outcome for an output this person produces when working
alone. Intuitively, the estimation of the individual citation index is possible be-
cause a person may sometimes work alone, providing a direct signal of his/her
outcomes in that case, and/or because the same individual moves between
different teams, allowing one to see how outcomes vary when a specific person
is involved. In practice, for patents, we estimate the individual citation index for
everyone in the technology class. For papers, very large fields in the WOS make
estimation slow. In the largest 25 WOS fields, we therefore take, at random, a
coauthor network within the field that contains between 50,000 and 100,000
unique authors. SI Appendix, Tables S1 and S2, presents the number of indi-
viduals analyzed for each field. Our estimation method is nonlinear least
squares and should be interpreted as producing descriptive regularities and a
tool for out-of-sample prediction, rather than isolating causative mechanisms.
See SI Appendix for detailed discussion of methods; SI Appendix further de-
scribes the computational insights that make such a large-scale analysis fea-
sible, demonstrates the successful convergence of the algorithm for widely
different starting values in the parameter space, and demonstrates run times
for collaboration networks of different size (SI Appendix, Tables S3–S5).
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1 Data

We study (1) journal article data from the Web of Science (WOS) and (2)

patent data from the United States Patent and Trademark Office (USPTO),

while also incorporating (3) data identifying members of the National Academy

of Sciences.

1.1 Paper Data

The paper data contain 24 million publications, constituting all research ar-

ticles indexed in the name disambiguated version of Thomson Reuters WOS

database that were published over the 1945-2005 period. The WOS records pa-

per titles, bibliographic information (journal, volume, issue, page), citations,

author information (names, affiliations), and citation links to other papers

in the database. Each document in our analysis is a research article as de-

fined by WOS (as opposed to other WOS document categories such as let-

ters, notes, editorial material, discussions, and meeting abstracts). The WOS

data are available to researchers through Clarivate Analytics and described

in detail at www.webofknowledge.com. The WOS database further provides

name-disambiguated identifiers for individual authors using their Distinct Au-

thor Identification System (DAIS), which combines a machine learning approach

that has high precision and recall (1) together with validated researcher identi-

fication sources like ORCID and ResearcherID, as well as user feedback (2).

We analyzed 240 fields of research as codified by the WOS. These fields

include all those in sciences, engineering, social sciences, and arts and humanities

where there at least 500 papers in the field. While our WOS dataset covers all

research articles published up to 2013, we use citations received within the first

eight years after publication (3) to measure the impact of a research article and

hence study papers published up to 2005. See Table S1 for the number of papers

and number of unique authors in each WOS field. Note that, for the 20 largest

Web of Science fields, we used large subsamples rather than the entire field to

assist with computational speed. Specifically, we drew, at random, one initial

author in each of these fields and then built a coauthorship network outwards

from that author until there were between 50,000 and 100,000 papers in the

sample for that field.
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1.2 Patent Data

The patent data contain all 3.9 million patents granted by USPTO with ap-

plication dates between 1975 and 2006. These data integrate three different

data sources: (i) the Patent Data Project of the National Bureau of Eco-

nomic Research (https://sites.google.com/site/patentdataproject/Home); (ii)

the updated patent data of (4) (https://iu.app.box.com/v/patents); and (iii)

the name-disambiguated dataset (5), which provides identifiers for distinct in-

ventors using a machine-learning approach. Together, these data record the

patent number, application year, unique inventor id, number of citations that

each patent received, and technological class of each patent.

We studied all 384 technological classes determined by the USPTO that have

at least 500 patents in the class. We use citations received within the first eight

years after patent application (3) to measure the impact of a patent and hence

study patent applications up until 2010. See Table S2 for the number of patents

and number of unique inventors in each technology class.

1.3 National Academy of Sciences Data

For the NAS members information, we extracted each NAS member’s name, af-

filiation, and their field of research (primary and secondary field) from the NAS

member search website (http://www.nasonline.org/member-directory/?page=form).

The list consists of 2,757 names who are alive at the time of our study. For 10

NAS members there is no affiliation listed (therefore they are excluded from our

study) and for 42 percent of members there is no secondary field listed.

1.4 Data Availability

The underlying journal article data, described in Section 1.1 above, are available

from Clarivate Analytics, but restrictions apply to the availability of these data,

according to institutional licenses, so are not publicly available. Data are how-

ever available from the authors upon reasonable request and with permission of

Clarivate Analytics.

The underlying patent data sets are publicly available as described in Section

1.2. Integrated patent data that support the findings of this study are available

from the authors upon request.

The list of NAS members and their publications are available from the au-

thors by email or by download from the corresponding author’s website.
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2 Methods

2.1 The Generalized Mean Function

We consider an outcome metric, y, for team-produced output and model its

expected value using the generalized mean function:

y = βn(
1

n

n∑
i=1

aρi )
1
ρ , (1)

where i indexes individual members of a team of size n and ai is an individual

index for person i that represents the outcome when this person works alone.

The term ρ is the generalized mean parameter, which defines how the parameters

ai are averaged together, and the parameter βn captures the advantage of teams

of size n in producing high impact research. Recall that we use the normalization

β1 = 1, which implies that y = ai for solo-authored work and thus individual

index is measured on the same scale as the outcome metric.

2.2 The Regression Model

Given a sample of team-produced outputs, including information regarding who

worked with whom and the outcome of each collaboration, we can estimate the

unknown parameters. We model a given outcome, yk, as having the expected

value given in (1) plus a stochastic error term. We can then formulate the

optimization problem using non-linear least squares regression and solve:

min
ρ,{βn},{a}

K∑
k=1

βn(
1

nk

nk∑
j=1

aρj )
1
ρ − yk

2

, (2)

where k indexes specific team-produced outputs and there are K research out-

puts in the sample.

A regression sample is constituted by the patents in a given USPTO tech-

nological class or the journal articles in a given WOS field. We thus estimate

field-specific values of ρ, {βn}Tn=2, and {ai}Mi=1, where M is the number of unique

authors in that field and T is the maximum team size in the data.

The estimation operates through variation in authorship structure. In par-

ticular, a person may sometimes work alone, providing a direct signal of his/her

outcome index, ai, and may also move between different teams, allowing one to

see how output varies when a specific person is involved. Tracing an individual
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across different settings has been used to study the role of CEOs (6), and it

has been used to study paper outcomes for a sample of MIT faculty (7). A dis-

tinction with these other methods is that we consider the individual fixed effect

in the context of the generalized mean function, allowing for a richer array of

mappings between individual and group outcomes.

More broadly, while individual fixed effects are useful, the analysis is ul-

timately descriptive and predictive, rather than causative. For example, re-

searcher team assembly, like the matching of CEOs to firms, reflect choices.

These choices may in turn influence the outcome when a set of individuals

work together. The descriptive regularities that emerge from the analysis may

thus follow from various underlying team processes and actions. Experimental

approaches, where team membership and other team features are varied exoge-

nously, are important areas for future work that can help isolate underlying

mechanisms.

Complementary to our approach, modeling and estimating team assembly

choices can also be revealing. The study (7) considers a framework where an

individual scientist weighs the potential gains from collaboration against the

limited credit the individual may receive when the output is jointly produced.

In a sample of approximately 650 MIT scientists, (7) finds that team-authored

outputs have higher impact than solo-authored outputs and estimate a credit-

sharing rule in their sample that can make team assembly choices rational.

They also find evidence, although it is more ambiguous, that collaborations

between junior and senior scientists may result in lower impact, which might be

interpreted as consistent with ρ < 1. However, by contrast with our approach,

(7) considers output in an additive regression framework (as with ρ = 1), leading

to a question of how their findings would look when an index of solo-authored

outcomes combines in a non-linear fashion and at the much lower values of

ρ estimated in this paper. More generally, modeling approaches like those in

(7) allow one to leverage formal considerations of choices to reveal structural

parameters of interest, providing additional avenues forward in understanding

team-based outcomes.

2.3 Computational Algorithm

To solve the optimization problem formulated in Eq. (2), we use the gradient

descent method. To do so, we need to calculate the derivative of the objec-

tive function, (2), with respect to all its relevant parameters: ρ, {βn}Tn=2, and
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{ai}Mi=1 in a given field.

To improve computational efficiency, and since large team sizes are rare, we

consider outputs with 8 or less collaborators only, which account for 97% of

papers and 99% of patents. Further, we collect rare, larger teams into a single

β parameter, estimating {β2, β3, β4} for teams of size 2, 3, 4, and letting β5

account for teams of size 5 through 8.

2.3.1 Gradients

The algorithm considers the first derivatives of Fk =
(
βnk( 1

nk

∑nk
i=1 a

ρ
i )

1
ρ − yk

)2
for any given output k and for each relevant parameter. Using gradient descent,

we search for the parameters that minimize the sum of Fk across all outputs in

the sample.

For an individual who is part of the team that produced output k, the

derivative with respect to that individual’s ai is:

∂Fk
∂ai

=
2

nk
βnkai

ρ−1

 1

nk

nk∑
j=1

aρj

 1
ρ−1

βnk
 1

nk

nk∑
j=1

aρj

 1
ρ

− yk

 (3)

The first derivative with respect to βnk is:

∂Fk
∂βnk

= 2

βnk(
1

nk

nk∑
j=1

aρj )
1
ρ − yk

 (
1

nk

nk∑
j=1

aρj )
1
ρ ). (4)

And the first derivative with respect to ρ is:

∂Fk
∂ρ

= 2

βnk(
1

nk

nk∑
j=1

aρj )
1
ρ − yk

×
βnk
ρ

(
1

nk

nk∑
j=1

aρj )
1
ρ .

∑nk
j=1 a

ρ
j ln(aj)∑nk

j=1 a
ρ
j

− 1

ρ
(

1

nk

nk∑
j=1

aρj )

 (5)

For the optimization problem, (2), the relevant gradient for updating each

parameter is then the sum of that parameter’s derivatives across the set of

outputs k = 1, ...,K.
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2.3.2 Algorithm for Individual Citation Index

A primary computational challenge is the large number of individuals, M , in a

field, where each individual has his/her own impact index value, ai, and collab-

orates with others across a complex network structure and with varying team

sizes. While some WOS fields have a relatively small number of individuals,

the largest fields have hundreds of thousands of different authors. The scale of

these networks can thus require estimation of a very large number of individ-

ual parameters in each iteration, and requires keeping track of large but sparse

matrix of specific collaborations.

Key computational insights regards how one organizes the collaboration ma-

trices and how one updates these individual index parameters. In particular,

rather than confronting M×M collaboration matrices and looping over each in-

dividual author, which can require problematic numbers of separate executions

of the code for each round of the gradient descent, we instead simultaneously

update the vector of author index values. This vector approach, which requires

storing information in a particular way, speeds up the algorithm by many orders

of magnitudes for large fields.

In particular, we proceed by building collaboration matrices with a dense

information structure. Taking a given field, we first sort the ensemble of authors

by assigning an integer from 1 to M to each individual and then building a

matrix in which the first column is the ai of each author. Then we build each

row (from the second column to the last column) to list the individual identifiers,

a number 1 to M , that indicates a specific coauthors of the person in the first

column.

For example, for the dual-authored papers, the collaboration matrix has the

following structure:

A2 =



a1 p11 p12 · · · · · · · · · · · ·
a2 p21 p22 · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...

aM pM1 pM2 · · · · · · · · · · · ·


(6)

where, e.g., the p1j in the first row are the individual identifiers (a number 1...M)

for author 1’s coauthor in author 1’s jth dual-authored paper. Define the largest

number of dual-authored papers from any given author as Q. This matrix has
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the nice feature that it is comparatively small size: Rather than using an M×M
matrix to define collaborators, here the matrix A2 is an M × (Q + 1) matrix,

where Q << M . Algorithmically, this set-up allows us to calculate (3) by

looping across the relatively small number of columns, rather than down the

potentially very large number of rows.

To calculate the gradient for updating each author’s index parameter, via (3),

we also need another matrix containing the outcome, y, for each dual-authored

paper. Specifically, we build a similar matrix to (6) in which the first column

is removed and the ith row lists each y of the dual-authored papers written by

author i, producing an M ×Q matrix.

Y2 =



y11 y12 · · · · · · · · · · · ·
y21 y22 · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...

yM1 yM2 · · · · · · · · · · · ·


(7)

Now, note that ~a = A2(:, 1) is the current vector of individual parameter

estimates. For the jth dual-authored outputs, the vector of outcomes is ~yj = Y2(:

, j) and the coauthor parameters for these outputs are ~aj = A2(A2(:, j + 1), 1).

Thus we can calculate Eq. (3) in vector form. We then iterate across the

columns of these matrices, i.e., summing across all the dual-authored outputs

in which an individual is involved.

2.3.3 Extending the Approach to General Team Sizes

In order to build a similar matrix for team-authored papers with larger numbers

of coauthors, the first column of that matrix is again the ai’s of individuals (as

in the matrix A2). Then each row contains the individual identifier for each

coauthor of the person in the first column, organized by the specific paper or

patent. The coauthor identities, p, are again defined by the integer (1...M) that

gives the co-author position in the first column.
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An =



a1 p111 p112 · · · p11n p121 · · · · · · · · ·
a2 p211 p212 · · · p21n p221 · · · · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...

aM pM11 pM12 · · · pM1n pM21 · · · · · · · · ·


(8)

Following the same procedure for dual-authored papers, the derivative of

the objective function with respect to the individual index parameters for n-

authored papers can be calculated by looping over the columns of matrix An.

2.3.4 Computational Efficiency

We used two computational resources for this analyses: (1) the Kellogg Data

Center which contains 120 CPUs, 2TB of RAM, and (2) the Kellogg Linux

Cluster which is a set of five Linux servers, each having 28 CPU cores and

1.5TB RAM. Table S3 lists computational run-times of the algorithm for several

collaboration networks from the Web of Science, along with their corresponding

average team size.

2.3.5 Examples of Parameter Convergence

To examine the convergence of the algorithm, we first turned to an ensemble of

1,178 mathematics papers from a community of 657 authors. We started with

the following initial conditions: ρ = 1, {ai}657i=1 = 1, β2 = 1, β3 = 1, β4 = 1,

and β5 = 1. To demonstrate the ability of the algorithm to reach convergence

regardless of the initial conditions, we ran the algorithm for the aforementioned

example of mathematicians from alternative sets of initial conditions. We chose

initial conditions that are distant from the ultimate estimated values: (1) ρ = 3,

β2 = β3 = β4 = β5 = .1, and {ai} = 1 (2) ρ = −3, β2 = .1, β3 = .2, β4 = .3,

β5 = .4 and {ai} = 1. Using of these initial conditions, we can examine the

convergence history for the parameters and see that they converge to extremely

similar estimates. Visual representations of this convergence is available from

the authors upon request.

More generally, we considered 20 additional fields at random (see Table S4).

For each field, we ran the algorithm staring from four different sets of initial

conditions, as listed in Table S4A. Tables S4B-C show that the final estimates

for ρ and βN are similar regardless of the parameter starting points.
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2.4 Alternative Outcome Measures

For the output measure, the main text follows (3) and emphasizes the count of

citations within the first eight years after publication (papers) and application

(patents). Our methodology can also be applied to alternative output measures,

and robustness to other outcome measures may be useful to refine interpreta-

tions. For example, different fields can have different citation distributions, and

differences between solo and team-authored citation impacts may in part reflect

field differences across author configurations.

In our analysis, we isolate hundreds of subfields of the Web of Science and

similarly isolate hundreds of technology classes of the USPTO, but one can also

go further using alternative outcome measures. Here we consider two other

metrics for y. First, we consider the log citation count, specifically taking the

natural logarithm of the eight-year citation count (and adding 1 to the citations

so that the logarithm is well defined for works that receive no citations). This

logarithmic measures acts to reduce the role of upper-tail citation outliers in

influencing the results. Second, we consider a binary measure, where a paper

is consider high impact if it is among the top 20 percent of citations received,

with the upper 20th percentile being defined by field and year. This approach

forces each sub-field to have exactly the same outcome distribution. The data

sample is, as above, 20 fields.

As can be seen from Table S5, the estimated ρ with these alternative out-

come measures is below 1, indicating relative weighting toward the lower-index

members of the team. The estimated βs are greater than 1, also indicating

the impact advantage when researchers are working in a team. The findings

regarding team outcomes and organization thus appear broadly robust to al-

ternative outcome measures. At the same time, it is possible that solo and

team-authored work reflect variations across higher-resolution subfields within

the field categories we analyze, where different subfields have different citation

patterns.

2.5 Individual Index Estimation

Figure 4A presents the distribution of ai for all paper authors and, separately,

for all inventors. We plot log(ai+ 1) on the x-axis given the right-skewed distri-

butions of ai. The figure suggests the lognormal nature of these distributions,

as further shown in Fig. S3A-B, which is consistent with citation distributions

(8). The median individual impact measure is ai=1.32 (papers) and ai=1.05
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(patents), while the 95th percentile individual shows ai=23.07 (papers) and

ai=19.81 (patents). Interestingly, we see a similar distributional shape in both

the paper and patenting domains.

2.6 Visual Fit of Model

Figure 2 considers the visual fit of the model compared to raw data using the

construct R (see main text). The raw data version calculates ai using the mean

citations to an individual’s solo authored work and takes the citations to the

dual-authored paper as the outcome. By necessity, this analysis requires each

individual to have at least 1 solo-authored paper in addition to the dual-authored

paper. The modeled version of R uses the same sample as the raw data but

now takes the model estimated values âi and for the outcome calculates the

generalized mean (1) given âhigh and âlow and the appropriate ρ̂ and β̂ of the

field.

In Fig. 2, the x-axis presents x = ahigh−alow using the two individuals’ solo-

work averages, bucketed by integer values of the difference. The y-axis presents

R (for the raw data and model versions separately). The figure presents the

moving average of R at each x value, with uniform weighting of observations

over the [x− 2, x+ 2] interval.

2.7 Matching Analyses

The analysis of matching in Figs. 3A-D considers the actual frequency of collab-

oration compared to what is expected by chance, given authors’ index measures.

As in Fig. 2, we first calculate ai using the mean citations to an individual’s

solo authored work. We then calculate the discrete frequency distribution of

individuals according to the nearest integer value of ai. In a sample with Z

individuals, this frequency distribution is

f(a) =
1

Z

Z∑
i=1

1(ai = a) (9)

Now let there be J observed pairings, where a given pairing has individuals

with index measures (aj1, aj2). The observed frequency of individual index

pairings is then counted as

10



gobs(a1, a2) =
1

J

J∑
j=1

1(aj1 = a1, aj2 = a2) (10)

The null model is then developed as follows. Given the distribution f(a), the

probability under random matching that a dual-authored work occurs between

two people with index measures a1 and a2 is

gnull(a1, a2) = f(a1)f(a2) (11)

We can then compare the observed versus expected pairing outcomes through

the ratio

V (a1, a2) =
gobs(a1, a2)

gnull(a1, a2)
(12)

Figs. 3A-B plot V − 1 for all a1, a2 ∈ {1, ..., 25}. In these figures, V − 1 > 0

indicates that the observed pairing happens more often than expected by chance

and V − 1 < 0 indicates that the observed pairing happens less often than

expected by chance. Note that we do not triangularize these matrices.1

For Fig. 3C-D, we separately calculate the observed and expected distri-

butions and V (a1, a2) for each field. As a summary statistic for assortative

matching, we then examine the trace of V (a1, a2). Specifically, for each field,

we take V̄ as the arithmetic mean of V (a, a). Consistent with Figs. 3A-B, we

consider a ∈ {1, ..., 25}. This produces one observation per field, where a mean

greater than 1 indicates a tendency toward positive assortative matching. Fig.

3C-D present the distribution of V̄ across fields.

2.8 Out-of-Sample Prediction Regressions

To examine the accuracy of the individual index estimates, ai, we consider

their capacity to predict outcomes for out-of-sample papers and patents. Recall

that ai tells us the citation impact we expect for a paper or patent when the

individual is a solo author or inventor. We run our estimations again for 100

WOS fields and 100 USPTO technology classes but leaving out, at random, one

output from each individual. We then predict the outcome, y, for the paper or

patent that was dropped.

1That is, since gnull(a1, a2) is symmetric, we could alternatively enforce the order a1 < a2
and collect the observed off-diagonal terms, with the null model now being gnull(a1, a2) =
2f(a1)f(a2) where a1 6= a2.
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Using the test sample, we run ordinary-least-squares regressions of the form:

yi = α0 + α1Pi + εi (13)

for each field, where yi is a left-out output, Pi is a prediction metric, and εi is

an i.i.d. error term. Note that, by construction, there is one observation in this

regression for each individual in the field.

We consider four variants of the prediction metric. Recall that these are all

calculated in the estimation sample (i.e., they do not use the outcome in the

test sample, which we are trying to predict).

• Solo. Here we define Pi as the arithmetic mean citation impact of the

individual’s solo-authored work.

• All. Here we define Pi as the arithmetic mean citation impact of all

outputs associated with that individual, regardless of team size and with

no adjustment for team size.

• PP. Here we define Pi as a per-person (PP) average, taking the arithmetic

mean across all outputs associated with that individual but now dividing

citations for a given output by n, the team size.

• âi. Using the estimation samples, we re-run our computations for each

field, producing new estimates of {ai}Mi=1, as well as ρ and {βn}Tn=1, for

that field. The estimated parameters are then taken to calculate Pi using

the generalized mean function.

The above measures are featured in the main text. However, we further

consider a broad arrange of additional metrics for individuals, as reviewed in

(9). These measures, which include numerous metrics based on author order,

are defined in Table S7.

2.8.1 Data

We take 100 medium-sized fields in the WOS and 100 medium-sized technology

classes of the USPTO. For each field, we then randomly take a single paper

(patent) for each author (inventor) to create (i) a test sample, which is consti-

tuted purely from these left-out outputs, and (ii) an estimation sample, which

contains all the other outputs in that field (i.e., all the papers or patents except

those in the test sample). In practice, for each WOS field or technology class,
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we create three versions of these test and estimation samples depending on the

team size we are studying:

• T1. The test sample leaves out 1 solo-authored work for each individual.

• T2. The test sample leaves out 1 dual-authored work for each individual.

• T3. The test sample leaves out 1 three-authored work for each individual.

Naturally, an individual must have at least two works to be considered,

so that one work can be left out and we can still construct a prediction metric

from the estimation sample. Moreover, because one of our alternative prediction

metrics depends purely on an individual’s solo-authored work, we restrict each

field dataset to individuals who have at least two solo-authored works.

Note that for solo-authored work (the T1 test sample), the generalized mean

function simply gives Pi = âi. For team-based work (the T2 and T3 test sam-

ples), the generalized mean function predictor further incorporates the appro-

priate estimates ρ̂ and β̂n for the field.

For the other predictors (Solo, All, and PP as defined above and featured in

the main text, as well as the additional measures defined in Table S7) we take

the individual-level measure for the solo-authored prediction regressions (the T1

test sample). For team-based work (the T2 and T3 test samples), we take an

arithmetic mean of the individual measures in the specific team to calculate Pi.

2.8.2 Out-of-Sample Prediction Results

The regression (13) is then run separately for each field, for each prediction

metric, and for each test sample (T1, T2, T3). For each regression, we record

the R2 to capture goodness-of-fit. Figs. 4B-C in the main text focus on pre-

dicting solo-authored outcomes (T1 sample). Fig. S4B presents the cumulative

frequency distribution of these R2 for paper fields, comparing the predictive

success for each of the four prediction metrics (âi, Solo, All, PP). Fig. S4C

considers the same but for patenting fields.

Following a similar format, Figs. S4A-B examine the T2 samples (dual-

authored works) for both papers and patents. Figs. S4C-D examine the T3

samples (three-authored works) for both papers and patents.

For the many additional metrics defined in Table S7, we further summarize

their predictive success in Table S8. We provide the mean and median R2 for

paper fields, using each of the metrics. For comparisons, we also present the
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mean and the mean and median R2 using âi as well the metrics features in the

main text.

2.9 National Academies of Sciences Analysis

2.9.1 Matching NAS Members to WOS Data

To find the corresponding WOS Author ID for each NAS member we matched

their last name, first initial, affiliation, and their field of research with our WOS

database. Since primary and secondary fields listed in the NAS membership are

broader/coarser than WOS fields, we created a crosswalk from NAS primary and

secondary fields to multiple WOS fields. Table S9 summarizes this crosswalk.

For each NAS member we followed the following matching procedure. First, we

looked for the set of WOS Author IDs with the same last name and first initial.

Second, we trimmed this set by looking for authors who have more than one

third of their publications in the primary and secondary fields listed for that

individual in the NAS membership database and have at least 10 publications.

Finally, we take the Author ID(s) where one of the WOS affiliations matches the

NAS member’s affiliation in the NAS database. Our analysis considers those

NAS members for whom we find a unique WOS Author ID and for whom the

corresponding â is also available in our estimations, which represents 45% of all

NAS members. Table S10 summarizes the results of this matching algorithm.

2.9.2 Cohort Comparisons

After finding the corresponding WOS Author ID for NAS members, we can

compare them to broader cohorts of scientists based on different indexes (e.g.,

h-index, i10-index, pp-avg, all-avg, solo-avg, and â). To define a relevant cohort

for each individual NAS member, we take all WOS authors who (i) published

their majority of work in the same WOS field as the NAS member and (ii) share

the same first publication year with the NAS member. The mean cohort size for

an NAS member includes 1,967 individuals, and the median cohort size 1,430

individuals. We rank each NAS member within their corresponding cohort set.

In Fig. 4E, we present two different rankings for NAS members among their

cohort. First we ranked them based only on their per-paper impact measures

(e.g., pp-avg, all-avg, solo-avg, and â ). Fig.4E (top line) shows the results of

this ranking. Second, We further incorporated the number of papers published

by each NAS members in ranking NAS members. To this end, for each NAS
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member, we take the rank of the NAS member and members of his/her corre-

sponding cohort based on per-paper impact measures (qri ), we also rank them

based on their number of papers in the same cohort (vri ). Finally, we rank the

NAS member based on qri × vri . Fig. 4E (bottom line) shows the results of this

per paper impact and paper count ranking for qri defined by our main measures

(pp-avg, all-avg, solo-avg, and â ).

We further show in Fig. 4E (bottom line) rankings based on well-known

career indices, hindex and i10index. The i10index is the number of the individual’s

publications with at least 10 citations each. The hindex is the largest integer h

such that the individual has published at least h papers each of which has been

cited in other papers at least h times.

Finally, we further ranked NAS members based on a broad range of ad-

ditional indexes defined on a per-paper basis (See Table S7 for a list of these

indexes). For each NAS member, we calculated their rank in their corresponding

cohort based on these per-paper impact measures, as well as on the per-paper

impact measure and paper count. We followed the same ranking procedure as

described above. Table S11 summarizes the results of these rankings.

2.10 Code Availability

The computational algorithm and other analyses were implemented in Matlab,

drawing on a SQL database. The one exception is the out-of-sample prediction

regressions, which were performed in Stata. All code is available from the

authors upon request.
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Fig. S1.  Relationship between team production parameters for papers. There is evidence that 𝛽̂2 and 𝜌̂ are 

negatively correlated, but with substantial residual variation.  Table S6 provides regression results exploring 

the correlation. 
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Fig. S2.  Relationship between team production parameters for patents. There is evidence that 𝛽̂2 and 𝜌̂ 

are negatively correlated, but with substantial residual variation.  Table S6 provides regression results 

exploring the correlation. 
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Fig. S3.  Individual productivity. The distributions of the individual productivity parameters (𝑎̂𝑖) across 

Web of Science fields (A) and patenting fields (B).  The empirical cumulative density function is shown 

for 𝑎̂𝑖 > 1 (blue) together with fitted log-normal cumulative density function (red) in each panel. 
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Fig. S4.  Out-of-sample predictions. Predictions for two-author papers (A), two-inventor patents (B), 

three-author papers (C), and three-inventor patents (D).  We see large advantages of the model estimates 

in predicting out-of-sample outcomes compared to the other measures. Model predictions are based on the 

𝑎̂𝑖 for individuals in the team and the relevant 𝛽̂𝑛 and 𝜌̂ parameters for the field (estimated in samples 

where the we have left out the papers or patents in the prediction set).  See SI text for detailed methods. 
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Table S1.  Parameter Estimates by WOS Field.   

Field Name Paper Count Author Count 𝜌 𝛽2 𝛽3 𝛽4 𝛽5 

ACOUSTICS 46219 41171 -0.63791 1.493372 1.938176 1.497213 1.369275 

AUTOMATION & CONTROL SYSTEMS 15081 18528 -89.8321 3.574877 6.221267 9.777709 7.935242 

AGRICULTURE, DAIRY & ANIMAL SCIENCE 81552 89360 -0.60771 1.0521 1.013926 1.081317 1.208377 

AGRICULTURAL ENGINEERING 5218 8762 -1.62641 1.445881 2.753613 2.654927 3.764589 

AGRICULTURAL ECONOMICS & POLICY 1763 2610 -0.28957 1.935274 2.15423 1.125864 3.295714 

AGRICULTURE, MULTIDISCIPLINARY 17914 38464 -0.97065 3.621679 4.377908 3.225043 2.999245 

AEROSPACE ENGINEERING & TECHNOLOGY 69166 71139 -52.1045 2.467049 3.746375 5.169489 6.733012 

AGRICULTURAL EXPERIMENT STATION 

REPORTS 
10716 13212 0.153888 1.600808 1.296755 1.816645 2.489018 

ALLERGY 10959 19088 0.169956 1.312328 1.385236 1.568199 1.517174 

ANATOMY & MORPHOLOGY 32743 42617 -52.3464 2.225173 3.147256 4.379505 3.88886 

ANDROLOGY 7949 16433 -5.44096 1.537023 3.00265 4.929398 5.783273 

ANESTHESIOLOGY 66753 104173 -111.667 3.450145 9.775834 9.85756 13.8958 

BIODIVERSITY CONSERVATION 582 1259 -0.43321 2.469624 2.818322 5.70108 4.951838 

ASTRONOMY & ASTROPHYSICS 27711 25879 -1.31421 1.533542 1.996623 2.421541 2.535465 

PSYCHOLOGY, BIOLOGICAL 238109 110464 -1.58831 2.893714 4.615971 4.060856 4.183848 

BEHAVIORAL SCIENCES 5574 11448 -1.4576 1.093925 1.572939 1.979235 3.624471 

BIOCHEMICAL RESEARCH METHODS 7649 26122 -1.30355 1.1121 1.229243 1.308001 2.712256 

BIOCHEMISTRY & MOLECULAR BIOLOGY (*) 506903 639419 -0.09576 2.954008 4.336389 4.047762 3.094111 

BIOLOGY 106129 155476 -0.75062 1.220331 1.285951 1.493752 1.630004 

BIOLOGY, MISCELLANEOUS 18800 25119 0.153376 1.439536 1.625051 1.483013 1.104654 

BIOPHYSICS (*) 251171 384708 -1.06294 1.276597 1.652232 1.843318 2.047217 

BIOTECHNOLOGY & APPLIED MICROBIOLOGY 73059 149556 -0.60464 1.057775 1.12324 1.231146 1.373899 

PLANT SCIENCES 317483 296630 -26.1647 4.310178 7.59658 7.396153 5.013696 

ONCOLOGY (*) 268205 480904 -0.46099 1.091445 1.715886 1.872022 1.667831 

CARDIAC & CARDIOVASCULAR SYSTEMS 158025 266453 -101.652 3.555779 5.339207 5.476935 5.431346 

CELL BIOLOGY (*) 259648 463733 -0.83648 2.29605 2.594003 3.524602 2.851882 

CRITICAL CARE MEDICINE 11201 32676 -0.67656 3.661254 2.049003 2.402336 5.950759 

THERMODYNAMICS 224 560 -16.2543 2.490921 3.3441 3.347841 3.677349 

CHEMISTRY, APPLIED 34724 53593 0.023201 1.010594 1.0824 1.020761 1.053366 

CHEMISTRY, CLINICAL & MEDICINAL 28082 88517 -0.71112 1.133065 1.125599 1.299041 1.583159 

CHEMISTRY (*) 570413 627204 -0.83187 1.391222 2.071487 2.059216 1.83452 

CHEMISTRY, ANALYTICAL (*) 256807 346298 -1.21661 3.129685 3.695538 4.326129 5.801274 

CHEMISTRY, INORGANIC & NUCLEAR 160816 180081 -0.96343 2.781692 1.675107 2.66423 3.387871 

CHEMISTRY, ORGANIC (*) 430069 454216 -13.5873 3.095284 8.007852 4.290727 3.019204 

CHEMISTRY, PHYSICAL (*) 375838 415571 -0.69174 1.724373 2.52813 2.506055 2.603641 

COMPUTER SCIENCE, ARTIFICIAL 

INTELLIGENCE 
49595 69091 -101.678 8.865485 14.06572 14.02042 17.25533 

COMPUTER SCIENCE, CYBERNETICS 7771 10092 -0.65629 1.648285 1.482982 2.521744 1.844606 

COMPUTER SCIENCE, HARDWARE & 

ARCHITECTURE 
9933 16828 -0.81334 1.511928 2.6482 2.096534 2.813544 

COMPUTER SCIENCE, INFORMATION SYSTEMS 25071 37120 -1.12232 2.558623 4.016282 3.989967 3.143734 
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COMMUNICATION 22335 20944 -86.6834 2.851679 3.89169 5.222586 5.313739 

COMPUTER SCIENCE, INTERDISCIPLINARY 

APPLICATIONS 
16514 31578 -0.34264 1.378029 1.095223 1.257015 1.120185 

COMPUTER SCIENCE, SOFTWARE 

ENGINEERING 
65011 84046 -0.96226 1.863387 2.105735 2.256298 3.253631 

COMPUTER SCIENCE, THEORY & METHODS 141745 174833 -0.67198 1.394943 1.4221 1.359803 1.451823 

COMPUTER APPLICATIONS & CYBERNETICS 20606 20196 -0.27871 1.012799 2.3451 3.2196 4.432331 

CONSTRUCTION & BUILDING TECHNOLOGY 6582 8419 0.21645 2.010935 1.235803 1.168498 1.837289 

CRITICAL CARE 33024 70286 -0.28468 1.214319 1.310406 1.51784 1.2619 

CRYSTALLOGRAPHY 144016 203754 -104.473 2.68195 5.134793 8.397342 9.479953 

CYTOLOGY & HISTOLOGY 16840 28268 -2.80887 1.297725 2.913943 3.653931 4.861115 

DENTISTRY, ORAL SURGERY & MEDICINE 107474 122993 -0.82971 2.572759 2.63091 2.380465 1.140758 

DERMATOLOGY 105494 147986 -0.44127 1.02342 1.05427 1.061446 1.35338 

GEOCHEMISTRY & GEOPHYSICS 106161 111075 -103.679 5.169603 8.023401 13.80391 13.76922 

SUBSTANCE ABUSE 23998 41758 -61.708 2.044579 3.193409 4.293499 5.264149 

HEALTH CARE SCIENCES & SERVICES 10549 26735 -0.24005 1.806062 2.011922 1.863885 1.938528 

ELECTROCHEMISTRY 65005 80753 -101.883 1.962651 4.280817 6.942339 9.586182 

EVOLUTIONARY BIOLOGY 13614 26991 -97.7749 1.962728 3.22855 4.120825 5.877534 

DEVELOPMENTAL BIOLOGY 46813 81476 -1.80035 2.015423 2.84344 3.74355 4.19703 

ENDOCRINOLOGY & METABOLISM (*) 223030 353840 -7.07481 2.217918 3.06772 3.5957 3.4588 

ENERGY & FUELS 38843 65493 -0.81549 1.173603 1.784844 1.981919 2.166043 

ENGINEERING 61652 74782 -21.3232 1.966776 3.235285 4.490401 4.121911 

ENGINEERING, BIOMEDICAL 36790 78513 -1.13048 1.313425 1.680647 2.189769 2.264813 

ENGINEERING, ENVIRONMENTAL 5792 10254 -1.93539 1.29025 2.367601 2.861718 3.86809 

ENGINEERING, CHEMICAL 251266 293895 -6.59734 1.476822 2.562346 3.337268 4.221702 

ENGINEERING, INDUSTRIAL 13174 16616 -1.48192 3.702246 4.293428 4.674577 5.213447 

ENGINEERING, MANUFACTURING 14746 21376 -0.33336 1.688578 2.169566 2.53509 2.321862 

ENGINEERING, MARINE 4276 4540 -1.24933 4.076491 5.192444 3.665302 3.159417 

ENGINEERING, CIVIL 60048 70186 -16.0894 2.569574 3.191825 3.7461 3.479811 

ENGINEERING, OCEAN 1970 3457 -4.13915 1.91679 4.846438 5.199722 4.29098 

ENGINEERING, PETROLEUM 46860 66609 -0.85134 2.8542 4.410236 3.671214 4.55771 

ENGINEERING, ELECTRICAL & ELECTRONIC 

(*) 
313697 360623 -17.7462 2.199189 3.169605 3.609759 3.969994 

ENGINEERING, MECHANICAL 134602 167237 -0.83592 1.40146 1.806103 2.126207 1.977048 

ENGINEERING, GEOLOGICAL 1916 3873 -40.7468 3.675097 6.877459 5.551427 6.814168 

ENTOMOLOGY 128414 106423 -0.58442 3.102023 3.437352 3.33601 4.882095 

ENVIRONMENTAL SCIENCES 159381 260559 -0.32896 1.010906 1.023951 1.022337 1.010309 

ENVIRONMENTAL STUDIES 18116 21716 -0.1694 1.269239 1.101157 1.056135 1.675431 

ERGONOMICS 8718 12834 -1.38791 2.809661 3.29163 4.682956 5.078241 

FOOD SCIENCE & TECHNOLOGY 244371 292114 -36.6396 2.937385 4.560781 9.575752 3.079918 

GASTROENTEROLOGY & HEPATOLOGY 136039 265328 -0.57295 2.878564 1.920291 2.841251 2.654128 

GENETICS & HEREDITY (*) 245084 420347 -9.94017 7.388191 5.09104 3.874768 3.270564 

GEOGRAPHY 39520 31985 -79.9383 2.506544 3.414743 4.968912 5.678845 

GEOGRAPHY, PHYSICAL 3300 7468 -7.92628 2.820216 6.075744 6.145648 8.135737 

GEOLOGY 35343 47643 -0.36769 1.329444 1.630075 1.716371 1.641418 

GEOSCIENCES, INTERDISCIPLINARY 178142 203008 -106.546 3.702687 6.102979 9.819542 4.440829 
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GERIATRICS & GERONTOLOGY 38400 66684 -0.53777 3.504515 2.83629 1.631092 2.001465 

GERONTOLOGY 9379 22116 -0.85629 1.524469 2.167452 2.75779 3.7378 

HEALTH POLICY & SERVICES 26291 36760 -0.26411 0.787621 1.606379 1.517944 1.367428 

HEMATOLOGY 118171 244064 -1.27818 1.034736 1.317651 2.060012 2.711946 

MATHEMATICAL & COMPUTATIONAL 

BIOLOGY 
4879 13379 -0.69625 1.44601 2.303042 1.428128 2.782249 

HOSPITALITY, LEISURE, SPORT & TOURISM 319 612 -10.3155 4.014139 5.206053 3.476568 11.33113 

PUBLIC HEALTH 165301 286232 -56.9635 1.973961 3.095042 4.368136 5.14929 

IMMUNOLOGY 208111 322397 -81.7039 2.861622 5.250574 6.950381 9.750015 

INFECTIOUS DISEASES 89560 203454 -0.67828 1.064515 1.381112 1.182873 1.474199 

PSYCHOLOGY, APPLIED 46541 51560 -1.13608 2.234217 2.855539 3.850233 4.085334 

NANOSCIENCE & NANOTECHNOLOGY 4397 14874 -3.62394 1.16082 2.237341 6.915534 1.955042 

INFORMATION SCIENCE & LIBRARY SCIENCE 72266 63748 -11.2392 1.580817 2.660071 5.544014 5.72226 

INSTRUMENTS & INSTRUMENTATION 115492 181878 -24.086 2.787618 4.829886 5.451392 7.188086 

INTEGRATIVE & COMPLEMENTARY MEDICINE 3095 7881 -0.88364 2.805727 3.902754 2.486076 1.441379 

MEDICAL ETHICS 439 1158 -4.21285 5.821887 7.687987 3.16517 3.085881 

MEDICINE, LEGAL 12585 22593 -1.22212 1.697705 2.961414 2.76883 3.042602 

LIMNOLOGY 3353 6520 -0.5103 3.69976 6.876978 3.840584 3.032577 

LANGUAGE & LINGUISTICS 40824 30762 -31.3856 3.593858 5.850051 5.278308 6.607353 

MANAGEMENT 50791 51592 0.178006 1.193978 1.185465 1.260554 1.083691 

OPERATIONS RESEARCH & MANAGEMENT 

SCIENCE 
76199 77403 -72.0302 2.155313 3.589418 5.24298 5.823889 

MARINE & FRESHWATER BIOLOGY 127204 128773 -1.33599 1.593253 2.068659 2.30573 2.95343 

MATERIALS SCIENCE, PAPER & WOOD 49188 46542 -108.376 3.020347 7.078623 9.403677 12.71609 

MATERIALS SCIENCE, CERAMICS 69998 103693 -103.581 2.694172 5.560018 9.779149 9.835949 

MATERIALS SCIENCE (*) 297343 441467 -0.67828 2.582538 3.512234 2.680163 2.518452 

MATHEMATICS, APPLIED 161954 124049 -1.58451 1.368474 2.024366 2.771963 2.758212 

MATHEMATICS, INTERDISCIPLINARY 

APPLICATIONS 
15223 21040 -0.62897 1.069779 1.046987 1.258735 1.942032 

MATHEMATICS 401466 151573 -101.649 2.061685 3.622335 4.802691 13.5362 

SOCIAL SCIENCES, MATHEMATICAL 

METHODS 
19398 20026 -3.51324 2.407264 5.34752 7.115991 7.283256 

MEDICAL INFORMATICS 22485 48931 -0.51072 1.516367 2.504986 2.020617 2.601164 

MECHANICS 161656 155521 -106.392 2.480578 4.923809 7.077821 6.984633 

MEDICAL LABORATORY TECHNOLOGY 44032 102486 -0.66835 1.270161 1.6162 1.670253 2.17006 

MEDICINE, GENERAL & INTERNAL (*) 634825 974625 -0.3341 2.863796 4.798553 3.518837 3.386252 

METALLURGY & METALLURGICAL 

ENGINEERING 
191967 260749 -101.742 2.081333 4.301263 8.446742 9.788057 

MEDICINE, RESEARCH & EXPERIMENTAL (*) 205952 427646 -0.89542 1.149311 1.47091 1.851279 1.826935 

MEDICINE, MISCELLANEOUS 8228 15350 -0.65544 1.273981 1.316807 1.353552 1.492202 

MATERIALS SCIENCE, BIOMATERIALS 24558 53968 -0.43429 1.051001 2.393394 2.37866 2.385923 

MATERIALS SCIENCE, CHARACTERIZATION & 

TESTING 
38794 64702 0.166056 1.506171 1.392013 1.411742 1.498346 

MATERIALS SCIENCE, COATINGS & FILMS 31710 56665 -104.508 2.038246 6.460435 9.697189 9.837055 

MATERIALS SCIENCE, COMPOSITES 29450 50401 -0.21977 1.040203 2.36301 3.069476 3.048475 

MATERIALS SCIENCE, TEXTILES 21402 26525 -94.8217 1.808954 2.689396 4.161946 5.830735 

METALLURGY & MINING 61338 76644 -71.2969 2.09057 3.748177 4.849846 5.668076 

METEOROLOGY & ATMOSPHERIC SCIENCES 119858 114722 -54.1493 1.881166 2.976587 3.641023 5.052802 

MICROBIOLOGY (*) 261592 386844 -1.82718 1.565206 2.369825 2.711489 3.044738 
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MICROSCOPY 23463 43372 -0.95796 1.838093 2.207996 2.305621 1.839219 

ROBOTICS 7908 14132 -87.2703 2.582649 4.582073 5.945097 7.181401 

MINERALOGY 36354 36452 -101.65 1.542231 9.698319 6.722937 9.715099 

MULTIDISCIPLINARY SCIENCES (*) 560795 817884 -53.9814 2.988387 3.847402 4.849886 9.394644 

MYCOLOGY 29294 40550 -101.702 3.185076 6.576779 9.741299 14.08856 

CLINICAL NEUROLOGY 94764 182902 -2.37273 2.150223 3.507206 4.041721 4.49843 

NEUROSCIENCES (*) 367152 448300 -82.8752 2.701349 4.870093 6.271197 6.198934 

NEUROIMAGING 1981 7038 -0.49119 1.236003 1.025677 1.03491 1.005523 

NUCLEAR SCIENCE & TECHNOLOGY 119440 180278 -1.46646 1.53292 2.097975 2.334852 1.460812 

NURSING 50398 69481 -0.27217 1.245188 1.396644 1.346325 1.46581 

NUTRITION & DIETETICS 123318 201206 -0.58503 2.543186 2.923508 3.015739 3.762348 

OBSTETRICS & GYNECOLOGY 146901 224216 -107.335 3.541546 9.241255 9.853125 13.79945 

OCEANOGRAPHY 104654 114464 -109.428 2.829357 4.623968 8.637312 9.420201 

REMOTE SENSING 8005 14085 -0.65029 1.475673 1.967162 2.158326 1.912324 

OPHTHALMOLOGY 151008 166728 0.04379 1.586508 1.443012 1.743931 1.391209 

OPTICS 174763 216048 -1.81373 2.446406 2.942854 2.988174 3.626803 

ORTHOPEDICS 52198 88077 -2.62707 1.348083 1.976917 2.801114 3.386252 

OTORHINOLARYNGOLOGY 78407 99340 -101.802 3.043512 6.77136 13.86179 13.87816 

PARASITOLOGY 43507 56824 -74.5088 1.663378 2.638978 4.105554 4.926787 

PATHOLOGY 161026 305497 -0.91265 1.052377 1.844887 2.11129 2.227165 

PEDIATRICS (*) 201509 359821 -0.44897 1.945706 1.120142 1.013723 1.00541 

PHARMACOLOGY & PHARMACY (*) 550309 825696 -3.1744 2.319399 3.654992 4.53888 4.971218 

PHYSICS, APPLIED (*) 537307 630238 -97.0888 3.491701 6.557386 9.215971 6.084662 

IMAGING SCIENCE & PHOTOGRAPHIC 

TECHNOLOGY 
25049 36471 -153.622 2.944666 5.705571 9.866234 9.859701 

PHYSICS, FLUIDS & PLASMAS 69521 72757 -0.92101 2.932152 2.118677 2.608255 2.731721 

PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 259231 229550 -60.144 1.40619 2.443456 3.178074 4.213507 

PHYSICS (*) 557186 537062 -1.06275 1.580501 1.894491 2.118604 2.108821 

PHYSICS, CONDENSED MATTER (*) 471424 456949 -3.99176 1.170461 1.901275 3.163874 3.381769 

PHYSIOLOGY 235903 318082 -18.5029 1.65241 2.846007 3.610836 1.75699 

PHYSICS, NUCLEAR 113070 141033 -5.0331 1.617981 2.415257 3.482565 4.553606 

PHYSICS, PARTICLES & FIELDS 135223 129140 -101.378 2.257413 3.19878 5.321884 6.853666 

PHYSICS, MATHEMATICAL 140205 124309 -44.6428 2.406473 4.438553 4.500399 8.126398 

POLYMER SCIENCE 286550 300039 -0.77949 2.601121 2.545949 3.076675 3.375546 

PSYCHOLOGY, MATHEMATICAL 15054 16220 -98.4653 2.964803 4.291518 6.435142 7.65669 

RADIOLOGY & NUCLEAR MEDICINE (*) 294224 441907 -1.0803 1.514946 2.234817 2.04931 2.002945 

RESPIRATORY SYSTEM 98649 190809 -3.12515 1.243395 2.054548 3.045224 3.605678 

REPRODUCTIVE BIOLOGY 60054 102756 0.042524 1.048668 1.211628 1.221105 2.115809 

RHEUMATOLOGY 58774 108186 -3.36201 5.021176 5.867865 7.030696 3.920862 

SOCIAL SCIENCES, BIOMEDICAL 24596 40009 -1.07787 2.233682 3.443884 3.441012 1.882034 

AGRICULTURE, SOIL SCIENCE 84041 89637 -0.2882 1.625668 1.66857 1.579224 1.453116 

SPECTROSCOPY 161849 267898 -2.35357 1.016618 1.663252 1.598723 2.769249 

SPORT SCIENCES 81203 128907 -102.624 3.265562 6.010354 7.824635 6.519372 

STATISTICS & PROBABILITY 124351 90882 -3.95461 1.819751 3.061514 6.951111 6.033513 

SURGERY (*) 513427 730294 -0.1173 1.604692 3.385807 3.025853 3.017754 
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TELECOMMUNICATIONS 142286 175662 -0.64046 1.163391 1.823244 1.87981 1.847082 

TOXICOLOGY 161114 268963 -110.665 2.903586 6.575 9.788359 9.755397 

TRANSPLANTATION 76017 162838 -0.40605 1.008517 1.014932 1.005497 1.059571 

TRANSPORTATION 14086 18064 -0.65943 1.51927 1.93136 1.682693 1.722488 

TRANSPORTATION SCIENCE & TECHNOLOGY 16333 27825 -1.68482 2.229477 3.27586 4.057626 3.867854 

TROPICAL MEDICINE 46884 90580 -61.4714 2.194866 3.519515 5.036937 5.742102 

UROLOGY & NEPHROLOGY 173411 276198 -101.824 1.344791 2.788448 4.732565 6.368334 

VETERINARY SCIENCES 290205 329564 -1.17844 1.277963 1.903698 2.318916 2.872017 

PERIPHERAL VASCULAR DISEASE 166912 321039 -1.18122 1.065837 1.674582 1.60451 2.870398 

VIROLOGY 106596 181497 -0.8237 1.054476 1.350384 1.828472 2.109886 

WELDING TECHNOLOGY 731 970 -0.71149 2.128149 1.810453 1.940154 1.31893 

MINING & MINERAL PROCESSING 42977 59286 -76.9837 1.853841 2.712801 3.597141 4.741283 

WATER RESOURCES 126854 170368 -1.94337 1.484653 2.123702 2.74445 1.883943 
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Table S2.  Parameter Estimates by USPTO Technology Class. 

Class Patent Count 
Inventor 

Count 𝜌 𝛽2 𝛽3 𝛽4 𝛽5 

Abrading 7759 7702 -0.63368 1.236918 1.824313 3.29396 2.890066 

Abrasive tool making process, material, or 

composition 
11799 13416 -54.7664 1.251522 1.598658 1.341272 1.568552 

Acoustics 1533 2103 -0.19928 1.155329 1.33583 1.592249 1.627349 

Active solid-state devices (e.g., transistors, solid-state 

diodes) 
3831 5014 -4.06663 2.221702 1.749012 3.418743 4.161153 

Adhesive bonding and miscellaneous chemical 

manufacture 
47090 44348 -47.6256 1.48111 3.2331 1.818421 1.488163 

Advancing material of indeterminate length 23695 34418 -0.07987 1.359777 1.657051 0.635945 0.974664 

Aeronautics and astronautics 1681 2338 0.294249 0.951224 1.375352 1.315511 2.265253 

Agitating 9075 10967 -0.35227 1.65265 2.405514 2.376994 3.192983 

Alloys or metallic compositions 5413 7069 -0.60799 3.804806 3.145336 5.337454 2.219632 

Ammunition and explosives 2800 5089 -0.12374 1.365291 1.229887 1.371477 1.165385 

Amplifiers 5324 6330 -8.76693 1.861596 3.335205 4.791252 4.665764 

Amusement devices 8654 8574 -0.59592 1.549401 0.980617 3.809878 2.518983 

Amusement devices: games 7929 8241 -142.013 1.608597 1.482251 1.623082 2.133018 

Amusement devices: games 1134 1288 -24.0694 1.421812 1.620854 4.098825 1.074822 

Amusement devices: toys 4096 4388 0.014178 1.015087 1.291573 1.318855 2.750065 

Animal husbandry 6251 5780 -0.0106 0.894581 1.045318 1.36843 1.396785 

Apparel 7939 8448 -0.42907 1.58851 1.480865 1.947323 2.871392 

Apparel apparatus 9213 9485 -0.78604 1.380776 2.416262 2.700716 2.149333 

Article dispensing 1418 1406 -0.08367 1.768463 1.2651 1.637136 2.164341 

Automatic temperature and humidity regulation 3387 4373 -9.21724 1.306834 3.60431 2.004164 0.767263 

Baths, closets, sinks, and spittoons 2346 2877 0.308811 1.86286 1.815633 1.997117 2.287569 

Batteries: thermoelectric and photoelectric 7092 7589 -4.398 2.036227 0.310633 4.589291 1.563893 

Bearings 2813 3651 0.24973 1.006025 1.007166 1.183597 2.190758 

Beds 7099 7887 -20.1668 1.369139 2.287073 3.604323 5.810538 

Binder device releasably engaging aperture or notch 

of sheet 
7888 7866 -0.94769 1.281715 1.477571 1.940571 4.044317 

Bleaching and dyeing; fluid treatment and chemical 

modification of textiles and fibers 
839 799 -0.45462 1.502827 1.429779 2.312601 3.481053 

Bookbinding: process and apparatus 519 613 -4.09857 1.699645 2.135816 3.917212 6.00996 

Books, strips, and leaves 6478 7895 -25.8533 1.898675 3.194364 4.999255 6.183186 

Boot and shoe making 507 525 -3.63844 1.538129 2.518052 5.365485 8.088689 

Boots, shoes, and leggings 998 1083 0.213543 0.539623 1.266242 1.355039 2.741 

Boring or penetrating the earth 4884 4133 -0.37283 1.008835 1.224782 1.307842 1.185325 

Bottles and jars 5899 5696 0.206524 1.233454 1.66601 1.57284 1.992722 
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Brakes 4218 3923 -5.40069 2.231272 3.137836 1.661913 3.41293 

Bridges 7809 8394 -0.83753 1.389642 1.229038 1.614866 2.563043 

Brushing, scrubbing, and general cleaning 939 987 0.049495 1.849199 1.88912 2.308262 2.726023 

Buckles, buttons, clasps, etc. 11264 12037 -0.02327 1.284649 0.764362 0.906765 1.542127 

Buoys, rafts, and aquatic devices 6874 6835 -0.74685 1.127579 1.707595 1.303998 2.03069 

Butchering 2110 2260 -1.40493 1.22048 1.875117 3.471693 1.699148 

Card, picture, or sign exhibiting 2624 2554 -0.04745 1.003648 1.479275 1.38129 0.409822 

Catalyst, solid sorbent, or support therefor: product or 

process of making 
5965 6424 -1.4975 2.39408 3.152861 2.258621 4.512941 

Chain, staple, and horseshoe making 11936 14844 -0.78981 0.179131 0.162204 0.59612 1.354772 

Chairs and seats 662 682 0.220497 1.807797 2.20294 2.204603 3.059556 

Check-actuated control mechanisms 11000 11292 -0.04684 1.130677 2.86602 0.883223 2.206866 

Chemical apparatus and process disinfecting, 

deodorizing, preserving, or sterilizing 
1615 1753 0.024936 1.911585 1.855422 1.69661 1.605961 

Chemistry of hydrocarbon compounds 14110 22939 -43.0184 1.815564 2.665054 3.332778 3.1783 

Chemistry of inorganic compounds 6669 7193 -0.81609 1.451959 1.719384 1.263619 1.146585 

Chemistry: analytical and immunological testing 16145 23586 -35.8661 2.337746 1.694313 2.249723 0.515299 

Chemistry: electrical and wave energy 8529 14016 0.076707 1.092108 1.246681 1.329046 2.464237 

Chemistry: electrical current producing apparatus, 

product, and process 
14213 20749 0.271643 0.530524 0.8877 0.864059 0.709811 

Chemistry: fertilizers 13468 14908 -31.5009 1.55343 0.946759 1.311415 2.298057 

Chemistry: fischer-tropsch processes; or purification 

or recovery of products thereof 
1322 1864 -0.25735 1.582417 2.241695 3.702456 0.824247 

Chemistry: molecular biology and microbiology 909 1178 0.054811 1.363454 1.20915 3.351857 1.877779 

Chemistry: natural resins or derivatives; peptides or 

proteins; lignins or reaction products thereof 
49270 65155 -1.66526 1.478073 2.754201 0.356372 3.330928 

Chucks or sockets 10117 17316 -0.25766 2.125672 2.216566 2.4081 0.852771 

Classifying, separating, and assorting solids 1357 1407 -0.19863 1.085304 1.396587 1.328319 2.921136 

Cleaning and liquid contact with solids 5857 7813 -8.1379 1.943031 2.994628 2.088029 3.648099 

Cleaning compositions for solid surfaces, auxiliary 

compositions therefor, or processes of preparing the 

compositions 

8209 12299 0.530167 1.407039 1.557716 1.728097 3.348594 

Closure fasteners 9514 10261 -0.34974 1.367351 2.482471 3.181402 3.074615 

clutches and power-stop control 5176 5343 -0.06308 1.019106 1.187891 1.397043 1.687259 

Coating apparatus 8801 14008 0.366637 1.471426 1.820473 1.722242 1.720846 

Coating implements with material supply 3806 3995 -0.01009 1.01585 0.839811 1.753797 1.128139 

Coating processes 21454 36876 -57.7091 1.656781 3.034859 3.712963 0.99862 

Coded data generation or conversion 10364 12391 -1.0119 1.883153 1.798222 2.637482 4.333135 

Coherent light generators 11185 11942 0.187753 1.574833 1.545867 1.477267 1.334201 

Coin handling 603 578 -0.61452 1.758974 1.331954 2.202614 3.539976 
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Colloid systems and wetting agents; subcombinations 

thereof; processes of 
1629 2862 -0.78225 1.449004 2.994848 1.655311 2.038112 

Combinatorial chemistry technology: method, library, 

apparatus 
1049 1696 -19.6902 1.20091 2.716421 4.705593 5.643591 

Combustion 5166 5935 -0.29537 1.007231 1.608181 1.409472 2.184782 

Communications, electrical: acoustic wave systems 

and devices 
5593 6464 -0.15667 1.043313 1.586362 1.519694 2.545278 

Communications: directive radio wave systems and 

devices (e.g., radar, radio navigation) 
10012 12001 -3.06201 1.246941 2.226745 3.559681 2.496052 

Communications: electrical 26439 35234 -0.89312 1.158224 1.543946 4.290208 1.637288 

Communications: radio wave antennas 9712 10821 -1.06536 1.907636 4.073926 1.681786 3.213153 

Compositions 13483 20520 -103.031 1.395796 3.030443 2.940001 5.441692 

Compositions: ceramic 6105 8320 -0.9235 1.114784 1.354911 1.378361 1.828212 

Compositions: coating or plastic 10895 16000 0.444764 1.844311 1.963938 2.31893 3.46195 

Compound tools 783 874 -0.38832 2.434809 1.783441 4.385523 5.249833 

Computer graphics processing and selective visual 

display systems 
25531 28635 -0.72931 1.546761 1.394016 3.086275 0.652646 

Computer-aided design and analysis of circuits and 

semiconductor masks 
5598 7482 -0.53736 1.006527 1.302942 1.35093 3.252926 

Concentrating evaporators 517 872 -3.66178 1.488071 2.279836 5.053053 5.961675 

Conveyors, chutes, skids, guides, and ways 590 716 -4.07976 1.579096 2.228516 5.21467 7.473022 

Conveyors: fluid current 1691 2278 -3.98069 1.265718 3.282175 3.545386 0.950875 

Conveyors: power-driven 10814 12170 0.26445 1.803901 1.949012 2.615008 3.13909 

Crop threshing or separating 852 902 0.012138 1.719056 1.52301 1.612772 1.845833 

Cryptography 3640 4582 0.352674 1.714472 1.69279 3.016879 2.92894 

Cutlery 7292 7239 -0.52398 1.070203 2.179595 0.305431 2.293922 

Cutters, for shaping 1585 1513 -0.42302 1.508838 2.120583 0.951758 1.723343 

Cutting 8037 9197 -0.25946 1.945693 2.282979 2.70318 4.37172 

Cutting by use of rotating axially moving tool 3174 3537 -21.4302 1.709043 2.342727 1.531944 1.960538 

Data processing: artificial intelligence 2952 4301 -1.58477 1.51004 1.686933 2.905473 1.847866 

Data processing: database and file management or 

data structures 
13089 19661 0.222121 1.151643 1.137282 1.190881 2.840054 

Data processing: financial, business practice, 

management, or cost/price determination 
7427 12220 -0.7253 1.855772 2.212391 1.87067 2.403236 

Data processing: generic control systems or specific 

applications 
13057 22360 -27.8085 1.475721 2.371143 2.396424 3.243236 

Data processing: measuring, calibrating, or testing 12846 22931 0.274596 1.523364 1.966796 2.198008 3.265539 

Data processing: presentation processing of 

document, operator interface processing, and screen 

saver display processing 

8464 13462 -17.6279 1.525125 1.998018 2.154861 3.534933 

Data processing: software development, installation, 

and management 
4552 7135 -0.26558 1.494457 1.689856 1.33109 0.470454 



29 
 

Data processing: speech signal processing, linguistics, 

language translation, and audio 

compression/decompression 

7675 8295 -101.65 2.171848 3.582398 0.649875 1.364793 

Data processing: structural design, modeling, 

simulation, and emulation 
3773 7118 -0.52451 2.420651 1.413365 1.622139 2.541098 

Data processing: vehicles, navigation, and relative 

location 
13705 18044 -1.06716 1.694272 1.598579 1.667201 2.449097 

Demodulators 931 1289 0.84486 1.39146 2.307789 2.689603 3.009633 

Dentistry 7700 6509 -11.8474 2.29589 3.344301 1.652339 4.918932 

Deposit and collection receptacles 716 832 0.155034 1.575289 3.157945 5.214231 2.288176 

Dispensing 14122 14966 -35.1874 1.906471 0.983529 0.679231 1.379045 

Distillation: apparatus 1286 1776 -0.82825 1.549862 2.255866 2.781112 2.090873 

Distillation: processes, separatory 1967 3021 -1.30269 1.589499 3.095527 2.737303 2.439005 

Drug, bio-affecting and body treating compositions 77571 73700 -4.0375 1.848277 2.527427 4.693021 5.860491 

Drug, bio-affecting and body treating compositions 42145 52548 -0.47091 1.164109 1.379043 1.836029 5.384632 

Drying and gas or vapor contact with solids 5917 7843 0.011194 2.535911 3.296676 4.31734 3.656191 

Dynamic information storage or retrieval 15170 11568 -0.82649 1.225379 2.504555 0.740194 1.855349 

Dynamic magnetic information storage or retrieval 22576 18961 -0.83166 1.277494 1.894022 4.226385 1.785112 

Dynamic optical information storage or retrieval 2341 2686 -0.41125 1.763406 3.497068 2.303187 2.596459 

Earth boring, well treating, and oil field chemistry 1832 2026 -2.01133 1.348715 2.321201 3.021407 1.333943 

Earth working 3495 3367 -0.04595 1.085111 1.658219 2.249412 2.963423 

Education and demonstration 5499 7199 -0.41034 2.213617 1.468252 2.035755 2.85551 

Electric heating 22549 29640 -59.3928 2.268137 3.331122 3.238237 1.987603 

Electric lamp and discharge devices 12660 14325 -50.9357 1.211104 1.515397 1.924804 1.895994 

Electric lamp and discharge devices: systems 12202 13663 -0.87435 1.39484 1.779673 1.324439 4.239555 

Electric lamp or space discharge component or device 

manufacturing 
2407 3877 -0.31537 1.574742 1.874112 2.347498 1.697249 

Electric power conversion systems 7926 8626 -0.56579 1.923828 2.543979 4.726626 3.326357 

Electric resistance heating devices 2266 3139 -4.89894 3.003422 4.186823 2.651283 0.856971 

Electrical audio signal processing systems and 

devices 
7600 8231 0.441733 0.655121 0.776817 0.76194 1.500739 

Electrical computers and digital data processing 

systems: input/output 
13268 18231 -1.47657 1.755094 2.440706 1.011176 4.00636 

Electrical computers and digital processing systems: 

interprogram communication or interprocess 

communication (ipc) 

1729 3365 -2.23736 1.984037 3.10491 2.21399 1.800055 

Electrical computers and digital processing systems: 

memory 
14310 16590 -0.63075 1.232374 1.69294 0.828155 1.508397 

Electrical computers and digital processing systems: 

multicomputer data transferring 
13638 22444 -60.183 1.79611 2.114731 1.672023 2.074769 

Electrical computers and digital processing systems: 

processing architectures and instruction processing 

(e.g., processors) 

6708 7146 -0.96486 1.196326 1.525296 1.334955 1.411928 
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Electrical computers and digital processing systems: 

support 
8780 13111 0.254776 0.957998 1.175116 1.697631 3.410814 

Electrical computers and digital processing systems: 

virtual machine task or process management or task 

management/control 

1840 3518 -0.90192 3.264452 4.052807 4.790879 2.000149 

Electrical computers: arithmetic processing and 

calculating 
7128 8330 -1.88023 2.282361 3.427182 4.387114 5.21062 

Electrical connectors 32353 27648 -4.13067 1.752225 1.930778 3.760966 4.308385 

Electrical generator or motor structure 17655 20338 -0.66835 1.548988 2.058864 2.071739 1.76027 

Electrical pulse counters, pulse dividers, or shift 

registers: circuits and systems 
2289 3175 -0.52023 1.09632 1.687868 2.145467 2.591989 

Electrical resistors 2810 4409 -0.18911 1.899386 2.677896 1.858348 1.827809 

Electrical transmission or interconnection systems 5820 9288 -0.04497 1.035524 1.343361 1.346959 1.965634 

Electricity: battery or capacitor charging or 

discharging 
4277 5395 0.038917 1.646346 2.33872 3.206299 3.82378 

Electricity: circuit makers and breakers 9536 11137 -11.6327 2.328758 3.115115 0.34071 3.11226 

Electricity: conductors and insulators 11564 17071 -1.73746 1.407338 0.348694 1.432795 3.366129 

Electricity: electrical systems and devices 27056 36058 0.304715 0.584305 1.538243 2.229047 3.385242 

Electricity: electrothermally or thermally actuated 

switches 
2250 2342 -1.25907 1.580918 2.848561 2.238661 1.044552 

Electricity: magnetically operated switches, magnets, 

and electromagnets 
5332 6639 -0.47343 1.077089 1.283278 1.862064 1.25088 

Electricity: measuring and testing 28643 35281 -4.58812 1.622443 2.092453 4.780315 5.208762 

Electricity: motive power systems 13575 16835 0.080379 0.801316 1.039082 1.012662 1.402391 

Electricity: motor control systems 805 1181 -4.976 1.545813 3.101229 1.909986 2.172166 

Electricity: power supply or regulation systems 5596 6676 -0.02238 1.098141 0.586997 0.745894 1.650206 

Electricity: single generator systems 1234 1540 -1.61968 1.490069 3.017881 4.209023 1.294787 

Electrolysis: processes, compositions used therein, 

and methods of preparing the compositions 
10359 15616 -6.44307 1.643733 2.203045 2.892108 1.99023 

Electronic digital logic circuitry 8334 8144 -0.97923 1.562433 2.422597 1.822042 2.960091 

Electrophotography 18277 14274 -1.1715 1.672901 2.049252 0.612915 1.547871 

Elevator, industrial lift truck, or stationary lift for 

vehicle 
2928 2881 -0.09654 2.231049 3.31714 4.316007 2.546559 

Elongated-member-driving apparatus 2871 2589 -0.01006 1.296748 2.910271 3.64497 0.535697 

Endless belt power transmission systems or 

components 
4230 4129 -0.31811 0.968778 1.465568 3.597998 2.919219 

Envelopes, wrappers, and paperboard boxes 4821 4481 0.300484 1.833349 1.811146 3.477671 4.011945 

Error detection/correction and fault 

detection/recovery 
16913 24217 -0.68026 1.462188 1.666795 4.116977 2.18012 

Etching a substrate: processes 4457 8431 -0.13927 1.873367 0.244562 0.79334 1.563238 

Excavating 2755 3019 -0.43559 2.747785 2.570707 1.017476 0.999599 

Exercise devices 8179 7192 0.26739 0.732362 0.729831 1.541146 2.316346 
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Expanded, threaded, driven, headed, tool-deformed, 

or locked-threaded fastener 
4792 4700 -0.01852 1.253749 1.597844 3.48002 3.971474 

Expansible chamber devices 3090 3932 -0.35267 1.157543 3.007927 1.857127 1.123514 

Explosive and thermic compositions or charges 1646 1870 -37.7858 1.286186 1.871426 2.051577 1.300753 

Fabric (woven, knitted, or nonwoven textile or cloth, 

etc.) 
4326 7372 -0.03198 1.028495 1.229661 1.783404 2.407748 

Facsimile and static presentation processing 14399 14774 -0.61367 1.535723 1.223076 2.066184 2.16602 

Fences 1366 1477 -0.97542 1.134656 1.592876 3.989432 0.954468 

Fire escape, ladder, or scaffold 3892 4103 0.03855 0.749422 1.388203 1.306595 1.525038 

Fire extinguishers 1434 1592 -0.80825 1.29087 3.015301 4.003239 1.05074 

Firearms 3518 3101 0.178975 1.519664 0.642362 0.622637 2.037806 

Fishing, trapping, and vermin destroying 6979 7121 0.145516 0.985861 1.50281 1.572449 1.959476 

Flexible bags 2229 2302 -1.08869 2.736022 3.200786 3.740809 2.188092 

Flexible or portable closure, partition, or panel 3974 3757 -0.69863 1.002617 1.251413 1.558469 1.819271 

Fluent material handling, with receiver or receiver 

coacting means 
6196 8096 -0.00828 1.169379 1.225538 1.378043 1.163733 

Fluid handling 20388 23163 -0.98391 1.288695 2.002131 0.571142 2.56022 

Fluid reaction surfaces (i.e., impellers) 4858 5813 0.15716 1.115777 1.242181 1.640451 2.252799 

Fluid sprinkling, spraying, and diffusing 12307 13691 -17.3184 2.563985 3.233624 3.738374 2.11953 

Fluid-pressure and analogous brake systems 5260 4336 -0.70159 1.158668 1.376736 1.92697 3.822299 

Food or edible material: processes, compositions, and 

products 
17716 23344 -0.64108 1.457542 1.972078 2.023657 2.374311 

Foods and beverages: apparatus 6766 7667 0.133703 1.924877 2.768477 2.577879 5.201977 

Foundation garments 640 673 -1.43778 0.636771 0.633986 0.566172 0.90152 

Freight accommodation on freight carrier 1675 1867 -0.44052 1.029019 2.247373 1.732498 2.732136 

Friction gear transmission systems or components 517 377 -3.73281 1.459665 2.128779 6.817158 7.443231 

Fuel and related compositions 3158 3807 -4.45232 3.577349 3.780931 2.251997 1.3822 

Furnaces 3193 4440 -0.69948 1.480493 3.689231 3.160428 1.607462 

Games using tangible projectile 12958 11202 -4.67647 1.841152 2.639632 4.444803 6.176363 

Gas and liquid contact apparatus 3530 4391 -0.57589 1.483745 2.4751 2.30727 2.538021 

Gas separation 3497 4937 0.273067 1.401159 1.608603 1.405837 0.7519 

Gas separation: apparatus 3736 5721 -0.63013 1.04002 1.494053 1.319928 1.763777 

Gas separation: processes 4847 7462 -0.50543 1.061131 1.582528 1.300665 1.82708 

Gas: heating and illuminating 1395 1920 -0.47291 1.105214 2.420639 2.398568 2.315396 

Gear cutting, milling, or planing 2598 3458 -0.35316 1.163087 1.458008 0.354622 1.30933 

Geometrical instruments 9132 10716 -0.04183 0.956381 1.010594 1.254416 2.236394 

Glass manufacturing 6347 7450 -0.53551 1.320908 1.284017 1.376554 1.981635 

Handling: hand and hoist-line implements 4973 6011 -0.05583 1.001009 0.430937 2.356277 2.237158 

Harness for working animal 536 523 -4.4078 1.608373 2.354123 3.984543 3.927368 
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Harvesters 5656 5310 -0.01321 1.025036 1.266239 1.527269 2.620686 

Hazardous or toxic waste destruction or containment 1519 2808 -0.39301 1.767905 2.932407 3.84088 2.047314 

Heat exchange 10247 13147 0.028658 1.830226 2.0206 2.131591 3.368624 

Heating 3284 4858 -1.30759 1.701973 1.602551 0.865344 0.678591 

Heating systems 1052 1455 -0.25527 1.287977 0.472885 2.557075 0.77158 

High-voltage switches with arc preventing or 

extinguishing devices 
1749 2087 -0.43933 1.531254 2.601869 3.255293 3.669017 

Horizontally supported planar surfaces 3332 3976 0.030271 1.804727 2.675445 2.795554 4.011688 

Horology: time measuring systems or devices 4621 4491 -0.04552 0.979239 1.363535 1.436226 1.348197 

Hydraulic and earth engineering 9508 10645 0.1337 0.989648 0.753739 0.719743 1.209944 

Illumination 16014 16523 -1.51241 1.213523 1.530689 4.049798 1.702606 

Image analysis 19004 21484 -39.7713 1.485812 0.281751 3.804737 1.74413 

Imperforate bowl: centrifugal separators 1374 1389 -0.79514 1.095172 1.862272 1.729059 1.655998 

Implements or apparatus for applying pushing or 

pulling force 
3562 4008 0.090807 1.3791 1.289372 1.300504 1.610129 

Incremental printing of symbolic information 20217 16406 -0.67861 1.580277 1.777982 1.120725 1.597802 

Induced nuclear reactions: processes, systems, and 

elements 
5777 6766 -0.76548 1.497494 1.468321 2.102325 2.429988 

Inductor devices 2768 4202 0.186372 1.066764 2.451769 4.290465 1.245761 

Industrial electric heating furnaces 1501 2279 -8.48681 2.081006 1.752623 2.808021 2.039887 

Information security 2184 3936 0.014618 1.748206 2.317085 4.310074 1.614923 

Interactive video distribution systems 2875 4292 0.022639 1.637676 3.242934 4.29917 2.242335 

Internal-combustion engines 35783 31000 -4.03587 1.632849 2.266696 3.861931 3.989697 

Interrelated power delivery controls, including engine 

control 
4016 4226 -2.61884 1.543372 1.946548 1.724619 2.791769 

Jewelry 940 973 -0.46298 1.057091 2.603517 3.014275 2.374919 

Joints and connections 6321 8192 -0.05534 1.08654 1.400447 1.543161 1.671662 

Land vehicles 25236 25409 -0.52081 1.096457 1.56392 4.262045 1.381324 

Land vehicles: bodies and tops 11400 13774 -1.16603 1.663157 2.6194 2.705595 3.906842 

Land vehicles: wheels and axles 1951 2171 -4.97621 1.785459 2.157953 0.423658 1.714836 

Liquid crystal cells, elements and systems 10212 9458 -78.617 2.186714 2.452918 1.276692 2.632026 

Liquid heaters and vaporizers 2445 3163 -8.14158 1.135623 3.168653 4.227973 1.134574 

Liquid purification or separation 28346 34930 -4.33047 1.925067 2.381693 4.558878 5.252402 

Locks 6357 5876 0.19876 1.048967 1.220282 1.326104 2.661091 

Lubrication 1428 2018 -1.65872 1.532959 1.367578 3.26003 2.352372 

Machine element or mechanism 13781 16053 -19.5048 1.656842 3.374341 2.908798 2.479895 

Manufacturing container or tube from paper; or other 

manufacturing from a sheet or web 
3650 4204 0.322592 1.007827 1.436219 1.304783 2.97336 

Marine propulsion 3925 3269 -0.69064 1.873866 2.558314 2.352269 4.043077 
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Material or article handling 13478 16695 0.45901 1.839461 1.571854 1.766621 1.611789 

Measuring and testing 39929 52778 -4.29537 1.693824 2.219957 4.60795 5.465871 

Mechanical guns and projectors 2386 1969 0.073394 1.181257 3.49494 1.535884 2.531569 

Metal deforming 11489 14261 -0.12466 1.896467 1.804385 2.337146 4.29609 

Metal founding 6820 8917 -0.16305 1.224877 1.292049 1.604397 1.557766 

Metal fusion bonding 6576 10231 0.060417 1.456525 2.367801 3.972997 3.52707 

Metal tools and implements, making 807 976 -1.43558 0.860278 1.423667 1.245958 3.51446 

Metal treatment 9689 15175 0.155144 0.702284 0.957569 0.747776 1.413569 

Metal working 29446 44304 -5.12021 2.29895 2.490629 4.101147 4.04488 

Metallurgical apparatus 3406 5564 0.023166 1.399263 2.640387 4.090598 2.57472 

Mineral oils: processes and products 7489 7113 -87.736 1.687519 3.267057 4.056012 4.970381 

Mining or in situ disintegration of hard material 2333 2575 -2.12184 3.063363 3.619422 4.122306 3.88072 

Miscellaneous active electrical nonlinear devices, 

circuits, and systems 
19752 20106 -0.55932 1.413023 1.982583 2.203516 1.409722 

Miscellaneous hardware (e.g., bushing, carpet 

fastener, caster, door closer, panel hanger, attachable 

or adjunct handle, hinge, window sash balance, etc.) 

4748 5085 -9.48067 1.808954 1.368676 1.304494 3.218095 

Modulators 832 1158 -4.28648 2.159023 1.925272 0.528346 3.842758 

Motion video signal processing for recording or 

reproducing 
6149 5901 -0.54349 1.288733 1.260322 1.769166 2.302032 

Motor vehicles 11310 14120 -51.922 2.072154 3.554029 3.857556 5.573194 

Motors: expansible chamber type 3587 3899 0.221586 1.076503 1.205754 1.954942 2.946373 

Movable or removable closures 4852 5599 -0.79608 1.014641 1.383994 1.639943 2.797376 

Multicellular living organisms and unmodified parts 

thereof and related processes 
5612 6469 -0.45517 1.723313 0.411569 0.555794 1.049868 

Multiplex communications 29093 33903 -1.02702 1.217275 3.663647 4.415035 2.625042 

Music 8217 6180 -42.3539 1.580364 2.796817 3.740925 4.840851 

Optical communications 5566 6865 -0.01343 0.663916 0.666407 0.792742 1.968753 

Optical waveguides 21474 23430 -1.08032 1.847738 0.622621 3.873897 1.747136 

Optical: systems and elements 30699 28991 -4.04792 1.931035 1.994874 4.615576 3.282432 

Optics: eye examining, vision testing and correcting 5348 5152 -0.11127 0.72221 1.30279 1.655997 1.80244 

Optics: image projectors 3104 3483 -3.16041 2.451444 0.845509 3.341373 1.406128 

Optics: measuring and testing 20508 26736 -0.59224 1.345811 1.771371 1.454261 1.106978 

Optics: motion pictures 960 1075 -0.75908 2.262838 2.541522 4.338085 2.089746 

Ordnance 3645 4111 0.213718 1.021723 0.716959 1.64384 2.873481 

Organic compounds -- part of the class 532-570 series 10499 13898 0.243985 1.331935 1.322128 1.641738 2.594584 

Organic compounds -- part of the class 532-570 series 8874 16026 -1.4491 1.717536 1.20444 3.28474 2.962882 

Organic compounds -- part of the class 532-570 series 8349 13237 0.333659 0.740674 0.913082 1.105588 1.464456 

Organic compounds -- part of the class 532-570 series 8199 12548 -0.85899 1.36651 2.05295 2.733002 3.796176 
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Organic compounds -- part of the class 532-570 series 7273 11566 0.409653 1.651827 1.716746 1.94389 2.545181 

Organic compounds -- part of the class 532-570 series 7202 11766 -1.08147 1.322243 2.244056 2.034113 4.283244 

Organic compounds -- part of the class 532-570 series 6983 11783 -0.35225 0.877764 1.240409 2.949407 2.750827 

Organic compounds -- part of the class 532-570 series 6264 9962 -0.54609 1.22664 1.372333 2.439327 1.594063 

Organic compounds -- part of the class 532-570 series 5846 9754 -0.47437 1.002102 0.408103 1.462562 1.742395 

Organic compounds -- part of the class 532-570 series 5420 7469 -0.33923 1.97948 2.899328 1.428399 1.43573 

Organic compounds -- part of the class 532-570 series 4703 6717 -0.7143 1.129992 1.41673 1.420698 2.945517 

Organic compounds -- part of the class 532-570 series 4655 7295 -0.55457 0.958838 1.238533 1.325514 2.316061 

Organic compounds -- part of the class 532-570 series 2657 2719 -0.30788 1.052352 1.710449 1.651378 1.873993 

Organic compounds -- part of the class 532-570 series 2233 3826 -0.20186 1.317429 1.593946 3.580613 2.100385 

Organic compounds -- part of the class 532-570 series 1978 2451 -1.30695 1.575263 1.8226 3.943454 2.480264 

Organic compounds -- part of the class 532-570 series 1645 2608 0.087841 1.06184 1.343503 3.360078 2.022887 

Oscillators 5676 6989 0.150775 1.898548 4.004128 4.571547 3.618716 

Package and article carriers 5458 5905 -0.03142 1.259165 1.203432 1.300409 4.106798 

Package making 10362 11273 -7.18618 1.169504 1.890905 3.241483 3.74237 

Paper making and fiber liberation 6650 7799 -0.45861 1.091464 1.338094 1.628527 2.386326 

Perfume compositions 900 971 -0.9223 2.183285 3.708136 1.781943 3.898694 

Photocopying 6615 7029 -0.86044 1.114135 2.017503 2.35341 2.632611 

Photography 14769 8870 -1.09981 1.3593 2.195551 2.022381 2.126904 

Pipe joints or couplings 7759 8740 0.121274 1.916572 2.249974 2.223127 3.835544 

Pipes and tubular conduits 4046 5442 -0.09983 1.581721 2.503107 2.482951 4.235385 

Planetary gear transmission systems or components 4753 4521 -0.85973 1.017162 1.223545 1.34423 1.297711 

Plant husbandry 4147 4668 -0.77059 1.008335 1.771843 1.438594 2.306168 

Plant protecting and regulating compositions 7219 6200 -0.67901 1.338476 2.225835 2.303716 2.253031 

Planting 1315 1439 -2.32844 2.626896 3.738039 3.150587 4.180486 

Plastic and nonmetallic article shaping or treating: 

processes 
23606 37309 -1.24611 1.448964 2.643738 4.244204 2.255103 

Plastic article or earthenware shaping or treating: 

apparatus 
12322 15791 -1.31706 1.225604 1.603163 2.087203 2.230359 

Powder metallurgy processes 2021 3688 -0.73816 2.010594 3.473707 3.750889 1.136139 

Power plants 19856 21586 -0.81741 1.071687 1.837244 2.922444 2.692575 

Presses 3165 3574 -18.6891 2.244671 3.677139 2.909683 1.929226 

Prime-mover dynamo plants 2218 2996 -0.79131 1.008246 2.405451 2.734238 1.113906 

Printed matter 1897 2195 -0.30495 1.059126 1.28671 1.50353 2.036256 

Printing 9863 9600 0.197768 1.569026 1.752305 1.706798 3.114007 

Prosthesis (i.e., artificial body members), parts 

thereof, or aids and accessories therefor 
9547 9133 -65.4146 0.527434 2.374976 2.729663 2.575527 

Pulse or digital communications 21372 21897 -0.44956 1.063402 1.70393 1.702889 1.011914 

Pumps 11791 13911 0.21694 1.653209 1.67396 1.694511 2.11236 
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Radiant energy 32267 40560 -4.614 1.744357 2.241702 4.23838 3.684977 

Radiation imagery chemistry: process, composition, 

or product thereof 
34957 28688 -2.11155 1.015356 3.533009 3.240149 2.587077 

Railway rolling stock 2177 2231 -2.33155 2.523343 3.648722 1.92512 1.836949 

Railway switches and signals 805 956 0.312825 2.113782 2.276024 3.284042 1.266128 

Railways 2467 2717 -0.38301 1.120138 1.926318 2.195547 1.743861 

Railways: surface track 766 863 -51.8922 1.872604 2.471728 2.828321 5.799744 

Receptacles 10524 12403 -0.06671 1.132419 1.803716 1.35729 1.316323 

Record receiver having plural interactive leaves or a 

colorless color former, method of use, or developer 

therefor 

2744 2662 0.09442 1.221678 1.363705 2.183236 2.83059 

Recorders 1385 2109 -2.59869 1.261696 2.515776 1.276384 2.363365 

Refrigeration 18922 20859 -0.65406 1.255319 0.810777 2.379667 0.713351 

Registers 10378 12614 -101.662 1.384054 2.839599 0.681507 2.867494 

Resilient tires and wheels 4189 3759 0.014984 1.485033 2.383673 2.34171 3.524293 

Road structure, process, or apparatus 3371 3579 0.142568 1.46115 1.200158 1.459606 1.952382 

Roll or roller 845 1179 -0.98408 0.968728 1.537503 1.997492 2.551148 

Rotary expansible chamber devices 4305 4286 -0.16524 1.23139 1.361794 1.485392 3.149522 

Rotary kinetic fluid motors or pumps 6438 8314 0.216061 1.219399 1.342193 1.324715 2.093325 

Rotary shafts, gudgeons, housings, and flexible 

couplings for rotary shafts 
3075 3216 0.024714 1.240424 2.254725 3.657014 2.176902 

Seal for a joint or juncture 6110 7345 -0.05478 1.157465 1.213106 1.315783 1.185697 

Semiconductor device manufacturing: process 55195 47005 -4.06031 1.93241 1.667277 3.054512 5.325361 

Severing by tearing or breaking 1012 1273 -0.28624 1.505322 2.330584 1.720133 1.500007 

Sewing 5203 3910 -0.23786 1.532285 2.811426 2.711801 1.530603 

Sheet feeding or delivering 7297 8186 0.358799 0.697417 0.620684 0.761647 1.544869 

Sheet-material associating 1529 1795 -1.72924 1.262403 2.527443 1.295083 1.462313 

Ships 7864 8548 -0.01472 0.89051 0.88309 1.495341 2.451395 

Signals and indicators 1966 2471 -0.73281 2.402527 2.200516 0.371681 0.798817 

Single-crystal, oriented-crystal, and epitaxy growth 

processes; non-coating apparatus therefor 
3819 5818 -0.35008 1.581851 1.691856 1.714578 2.3194 

Solid anti-friction devices, materials therefor, 

lubricant or separant compositions for moving solid 

surfaces, and miscellaneous mineral oil compositions 

4992 5098 -1.01972 1.052363 1.59761 1.78916 1.26388 

Solid material comminution or disintegration 6230 7703 -0.17957 1.601648 1.524147 1.635628 2.238804 

Special receptacle or package 16620 18798 -20.2415 2.370117 0.343531 3.253028 0.685011 

Specialized metallurgical processes, compositions for 

use therein, consolidated metal powder compositions, 

and loose metal particulate mixtures 

6764 10873 0.23021 1.807462 1.809857 2.355272 3.561437 

Spring devices 3606 4086 -0.08488 1.037518 1.311422 1.335836 2.558224 

Static information storage and retrieval 26978 16709 -3.87834 1.749012 2.0912 3.045954 3.576336 
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Static molds 1716 2138 -0.92361 1.571413 4.145186 4.698728 1.697086 

Static structures (e.g., buildings) 21684 22413 -0.78821 1.108134 1.467342 0.595368 0.939114 

Stock material or miscellaneous articles 57013 80239 -4.1065 1.8291 2.393148 4.281499 5.482027 

Stone working 1029 1249 -51.8921 1.268751 2.85355 3.746073 1.792659 

Stoves and furnaces 7628 8175 0.4561 0.884502 0.551582 1.584807 2.213736 

Sugar, starch, and carbohydrates 803 1286 -0.27869 1.199417 1.122038 0.541967 1.250511 

Superconductor technology: apparatus, material, 

process 
2125 2793 -5.59081 2.040208 3.262736 4.108501 2.589709 

Supports 15064 17673 -98.433 1.891733 1.747147 1.726823 2.284383 

Supports: cabinet structure 5256 6548 -0.11279 1.001352 1.3516 1.609942 2.945231 

Supports: racks 6217 6806 0.016706 1.353639 2.265333 2.780712 2.563344 

Surgery 27900 29504 -4.48185 1.756791 2.056848 3.438234 4.35837 

Surgery 25082 22754 -0.53879 1.14468 1.500728 1.61274 2.268233 

Surgery 21029 17461 -0.83738 1.578148 3.279441 2.543427 1.600082 

Surgery 10202 11109 -9.25602 2.821513 0.619276 3.307718 3.161891 

Surgery: kinesitherapy 2741 3071 -0.03054 1.255782 1.299387 3.920633 2.635215 

Surgery: light, thermal, and electrical application 8800 7018 0.066258 0.515626 0.803751 0.971488 1.313182 

Surgery: splint, brace, or bandage 3893 4103 0.267503 1.012216 1.200118 1.354948 2.999298 

Synthetic resins or natural rubbers -- part of the class 

520 series 
23016 30615 -0.98247 1.125351 1.490969 1.952733 0.798927 

Synthetic resins or natural rubbers -- part of the class 

520 series 
20198 25073 -1.53592 1.142885 1.968288 2.781701 1.32617 

Synthetic resins or natural rubbers -- part of the class 

520 series 
16193 20154 -0.9381 1.229576 1.908856 3.335897 2.654603 

Synthetic resins or natural rubbers -- part of the class 

520 series 
10977 14570 -12.2262 2.695866 2.790572 0.591903 3.333297 

Synthetic resins or natural rubbers -- part of the class 

520 series 
7745 12689 -0.96349 1.323656 1.73167 1.29057 1.642532 

Synthetic resins or natural rubbers -- part of the class 

520 series 
6898 9005 0.377079 1.561554 1.695516 1.661391 2.653845 

Synthetic resins or natural rubbers -- part of the class 

520 series 
2425 4111 -0.85044 1.045196 1.65809 2.933733 2.389907 

Telecommunications 24945 28696 -0.35085 1.136122 1.448294 1.590359 1.556167 

Telegraphy 915 1214 -0.31254 1.831839 2.427313 1.564285 1.013995 

Telephonic communications 17342 21630 -1.20118 1.237786 1.900582 3.02158 1.248116 

Television 24039 24315 -95.6167 1.589368 2.503092 3.131743 4.464968 

Tent, canopy, umbrella, or cane 2375 2198 -0.56529 1.525887 2.763637 4.270359 1.700829 

Textiles: fiber preparation 1748 1524 0.126822 1.006032 3.191999 3.414352 2.594452 

Textiles: fluid treating apparatus 1918 2280 -0.74752 1.088481 0.206715 1.818896 2.556427 

Textiles: ironing or smoothing 828 1016 -1.04566 1.743562 2.018699 1.644002 1.912501 

Textiles: knitting 2649 2217 -0.26277 1.167918 2.820537 0.580886 2.178877 
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Textiles: manufacturing 1416 1776 -0.93391 1.110504 2.509563 2.701379 0.637005 

Textiles: spinning, twisting, and twining 4271 4006 -0.44694 1.72038 1.899031 2.12067 2.966946 

Textiles: weaving 3463 2734 0.129703 1.05968 0.779607 1.302465 2.471634 

Thermal measuring and testing 3681 5796 -0.05654 1.012726 1.208562 1.392452 2.873182 

Tobacco 3402 3285 -0.50347 1.71005 1.272045 1.90069 1.949288 

Toilet 3647 3709 0.030151 1.554877 1.526892 1.717347 3.498846 

Tool changing 836 1212 0.252497 1.792715 2.072388 2.225088 2.417853 

Tool driving or impacting 2370 2736 -2.12922 2.762708 3.216753 1.072998 2.435414 

Tools 6162 5802 -15.1912 1.90441 0.617201 0.68184 2.990621 

Traversing hoists 1126 1309 -1.16113 1.021133 1.926331 2.708974 3.496876 

Trunks and hand-carried luggage 817 735 -0.1114 1.249752 0.937676 4.739527 4.158667 

Turning 2053 2532 -0.84329 1.030941 1.927632 2.366983 1.412156 

Typewriting machines 7402 8340 -1.0476 1.318567 1.697194 3.671797 3.95283 

Valves and valve actuation 7235 9275 0.036156 1.94094 1.927768 2.059845 3.733555 

Vehicle fenders 1006 1424 -0.72214 1.783199 2.123557 2.363091 2.118786 

Ventilation 3638 4751 0.04705 1.002434 1.268502 1.406377 0.612066 

Wave transmission lines and networks 8625 9682 -0.56979 0.961622 0.995994 1.278483 1.356733 

Weighing scales 2589 3010 -1.05217 1.039263 3.353881 3.990741 1.608908 

Wells 12972 10637 -79.9942 0.986606 2.473516 4.128449 2.76344 

Wheel substitutes for land vehicles 820 819 -4.39953 2.733829 3.119915 0.631715 2.834134 

Winding, tensioning, or guiding 13032 13183 0.255256 1.038445 0.840959 1.205727 1.93675 

Wireworking 973 1245 -19.4382 2.166712 0.813478 3.012424 0.79966 

Woodworking 3234 3190 -0.12268 1.491146 2.034801 2.659029 2.676031 

Work holders 2891 3349 -1.04125 2.484105 1.426677 4.479091 4.268794 

X-ray or gamma ray systems or devices 8858 9182 -0.76172 1.033983 1.579865 0.858757 2.365469 
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Table S3.  Computational run times.  We present empirical run times for estimating the model parameters 

as a function of the number of papers and number of authors in the field. 

 

 

  

Field Code Team size Average Paper count Author count Running Time (hours) 

PN 1.81 161308 121976 20.08 

BP 1.07 73261 44471 18.46 

UQ 1.31 30749 32424 15.2 

WY 1.49 31773 34914 8.45 

BI 1.34 22597 18827 8.27 

YY 1.36 26408 26901 7.51 

NM 1.27 20094 17519 7.38 

EY 1.44 20483 19483 7.29 

YJ 1.08 20868 14217 6.03 

QJ 2.32 20660 24003 3.28 

VS 1.91 14968 15873 5 

OR 1.02 11847 9235 3.04 

AF 1.86 1702 2317 2.32 

IX 2.59 1816 3337 1.63 

BD 2.89 582 1259 1.17 
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Table S4.  Parameter convergence for 20 different fields.  (A) Four different sets of initial conditions for 

testing the algorithm convergence. (B) For each initial condition, final parameter estimates averaging 

across the 20 fields.  (C) For each field, final parameter estimates taking arithmetic mean and standard 

error across the different initial conditions.  We see broad consistency in the final parameter estimates 

regardless of the different initial conditions. 

Table S4A.   

Initial Condition 𝜌 𝛽2 𝛽3 𝛽4 𝛽5 

1 2 .1 .1 .1 .1 

2 4 .5 .4 .3 .2 

3 -2 5 4 3 2 

4 -4 10 10 10 10 

Table S4B.   

Final Results 𝑚𝑒𝑎𝑛(
1

1 − 𝜌
) 𝑚𝑒𝑎𝑛(𝛽2) 𝑚𝑒𝑎𝑛(𝛽3) 𝑚𝑒𝑎𝑛(𝛽4) 𝑚𝑒𝑎𝑛(𝛽5) 

1 0.1942 1.5609 2.1874 4.3405 5.1453 

2  0.1939 1.5604 2.1866 4.3430 5.1403 

3 0.1945 1.5589 2.1877 4.3384 5.1384 

4 0.1944 1.5614 2.1865 4.3400 5.1421 

 

Table S4C.   

Field Code 
Number of 

Authors 
𝑚𝑒𝑎𝑛 (

1

1 − 𝜌
) 𝑠𝑒 (

1

1 − 𝜌
) 𝑚𝑒𝑎𝑛(𝛽2) 𝑠𝑒(𝛽2) 

PQ 1580 0.00474 0.00273 1.55205 0.01085 

LQ 571 0.00116 0.00336 1.47234 0.00891 

RZ 561 0.00386 0.00608 2.45250 0.03608 

EY 1728 0.19140 0.03048 1.32522 0.03213 

FF 528 0.11234 0.02998 1.18652 0.03329 

XE 1105 0.11342 0.01269 3.27651 0.02063 

AF 1329 0.26132 0.03320 1.91949 0.03304 

PT 491 0.66194 0.07786 1.68077 0.02809 

MQ 216 0.65029 0.07178 1.17054 0.00373 

JO 3267 0.06357 0.02470 1.44762 0.02209 

AE 485 0.37075 0.04931 3.50253 0.02383 

YY 3883 0.43000 0.01239 3.41019 0.05204 

DB 2895 0.17036 0.03803 2.00119 0.02496 

PO 895 0.71089 0.08148 3.39815 0.04238 

BI 1641 0.01105 0.00866 2.78181 0.02147 

YE 455 0.08832 0.02587 2.91858 0.04192 

SR 489 0.05050 0.01937 1.09944 0.01700 

AM 371 0.13211 0.02276 2.27725 0.03859 

PI 813 0.00568 0.00610 2.29859 0.03980 

JI 979 0.20832 0.01888 2.51502 0.04338 
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Table S5.  Parameter estimation using alternative outcomes.  In the main text, we define the outcome 

variable, y, as the number of citations a work receives in the first 8 years after publication (papers) or 

application (patents).  For 20 different field communities (see Table S4C) we consider parameter 

estimates of 𝜌̂ and 𝛽̂2… 𝛽̂5 when defining alternative outcome measures, including (a) a logarithm citation 

count and (b) an indicator variable for high impact works. 

Outcome measure 𝜌 𝛽2 𝛽3 𝛽4 𝛽5 

Logarithm 0.19 1.42 1.47 2.5561 2.67 

Home Run Indicator 0.14 2.14 2.68 2.3609 2.21 

 

Note:  The logarithm measure is 𝑦 = log⁡(𝑐 + 1), where 𝑐 is the number of citations received in the first 8 

years.  We add 1 to include observations that receive zero citations.  The “home run” measure is an 

indicator, 𝑦 ∈ {0,1}, where 𝑦 = 1 if the citations received, 𝑐, are in the upper 20th percentile in that field 

and year, and 𝑦 = 0 otherwise. 
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Table S6.  Parameter regression results for the relationship between the estimated values of 𝜌 and 𝛽2.  

Each observation is a field in the respective domain.  Papers are considered in the first three columns and 

patents in the final three columns, using three different regression models.  A statistically significant 

negative relationship occurs for all three regression models and in both the paper and patenting domains.   

  Papers   Patents  

Regression Model (1) (2) (3) (1) (2) (3) 

       

Coefficient -0.121*** -0.350*** -1.897*** -0.294*** -0.427*** -1.057*** 

Standard Error (0.020) (0.048) (0.254) (0.051) (0.074) (0.172) 

R-squared 0.17 0.23 0.24 0.08 0.08 0.09 

Observations 182 182 182 384 384 384 

       

  

Note:  Regression model (1) examines 
1

1−𝜌
= 𝜃𝛽2 + 𝜖; regression model (2) examines 

1

1−𝜌
= 𝜃ln⁡(𝛽2) +

𝜖; and regression model (3) examines 𝑙𝑛 (
1

1−𝜌
) = 𝜃ln⁡(𝛽2) + 𝜖.   *** indicates statistical significance with 

p<0.01.  
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Table S7. Additional, author-order based indices for citation sharing in team papers, as collected in (28).  

The parameter 𝑟𝑖 represents the integer position of the 𝑖𝑡ℎ author in the author list, 𝑁 is the length of the 

author list (i.e., the team size), 𝜑 = 1.618 is the golden number used in the Golden p-index, and 0 < 𝛼 <

1 is an arbitrary constant used in the Arithmetic Index (we set 𝛼 = 0.5). 

Index Description 

First Author All citations are credited to the first author 

Lp-index (Linear Productivity) 
2

𝑟𝑖(𝑁 + 1)
 

Golden p-index {

1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑁 = 1
𝜑2𝑟𝑖−1⁡⁡⁡⁡⁡⁡⁡⁡𝑁 ≥ 2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝜑2𝑟𝑖−2⁡⁡⁡⁡⁡⁡𝑁 ≥ 2⁡⁡𝐴𝑁𝐷⁡⁡𝑟𝑖 = 𝑁⁡⁡⁡⁡⁡⁡⁡⁡
 

Trueba-Guerrero Index 
2𝑁 − 𝑟𝑖 + 2

𝑁(𝑁 + 1)
×
2

3
 

Proportional Index 
2 × (1 −

𝑟𝑖
𝑁 + 1

)

𝑁
 

Geometric Index 
2𝑁−𝑟𝑖

2𝑁−1
  

Arithmetic Index 

1

𝑁
+
𝑁 − 2 × 𝑟𝑖 + 1

2
× 𝛼 

 

Harmonic Index 

1
𝑟𝑖

∑
1
𝑗

𝑁
𝑗=1

 

 

 

 

 

  



43 
 

Table S8. The prediction of the citation impact outcome for out-of-sample solo-authored papers based on 

featured metrics in the main text and the additional author-order based metrics described in Table S7.  

Predictive accuracy is measured in field-specific regressions (see main text and SI methods), with the 

median 𝑅2 value presented below as a summary statistic. 

Index Median of regression 𝑅2  

Trueba-Guerrero Index 0.08 

Geometric Index 0.08 

Arithmetic Index 0.10 

Golden p-index 0.10 

Harmonic 0.11 

Lp-index 0.14 

Proportional Index 0.14 

all 0.09 

solo 0.20 

pp 0.20 

𝑎̂ 0.31 
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Table S9. Crosswalk from NAS fields to WOS fields 

NAS Field WOS Field(S) 

Systems Neuroscience Neuroscience 

Biochemistry Biochemistry And Molecular Biology 

Physics 

(Physics, Patricles And Fields) (Physics, Atomics, Molecular) (Physics, Multidiciplinary) 

(Physics, Condenced Matter) (Physics, Applied) (Physics, Fluids, Plasma) 

(Physics, Mathematical)(Physics, Nuclear) 

Economic Sciences Economics 

Engineering Sciences 

(Engineering And Technology) (Engineering, Manufacturing) (Engineering, 

Environmental) 

(Engineering, Biomedical) (Engineering, Petroleum) (Engineering, 

Aerospace)(Engineering, Electric And Electronics) 

(Engineering, Multidisciplinary) (Engineering, Marine) (Engineering, Mechanical) 

(Engineering, Chemical) 

(Engineering, Chemical) (Engineering, Ocean) (Engineering, Geological) (Engineering, 

Industrial) (Engineering, Civil) 

Medical Genetics, Hematology, and Oncology (Genetics & Heredity) (Hematology) (Oncology) 

Chemistry 

(Chemistry, Applied) (Chemistry, Multidisciplinary) (Chemistry, Inorganic, Nuclear) 

(Chemistry, Physical) 

(Chemistry, Medicinal) (Chemistry, Analytical) (Chemistry, Organic) 

Psychological and Cognitive Sciences 
(Psychology, Clinical) (Psycholog, Educational) (Psychology, Biological) (Psychology, 

Experimental) (Psychology, Psychoanalysis) 

Microbial Biology (Microbiology) (Biotechnology And Applied Microbiology) 

Animal, Nutritional, and Applied Microbial Sciences (Agriculture, Dairy & Animal Sciences) (Nutrition & Dietetics) 

Computer and Information Sciences 

(Computer Science & Ai) (Computer Science, Hardware, Architecture) (Computer 

Science, Interdisciplinary) (Computer Application, Cybernetics) (Computer Science, 

Cybernetics) (Computer Science, Information Systems) (Computer Science, Software) 

(Computer Science, Theory & Methods) 

Anthropology Anthropology 

Applied Physical Sciences 
(Physics, Applied), (Physics, Fluids & Plasmas),(Physics, Multidisciplinary),(Physics, 

Condensed Matter) 

Biophysics and Computational Biology (Biophysics) (Mathematical & Computational Biology) 

Mathematics (Mathematics, Applied) (Mathematics)(Mathematics, Misc) 

Physiology and Pharmacology (Physiology) (Pharmacology & Pharmacy ) 

Immunology and Inflammation (Immunology) 

Applied Mathematical Sciences 
(Mathematics, Applied), (Mathematics), (Mathematics, Miscellaneous) 

Astronomy Astronomy & Astrophysics 

Evolutionary Biology Evolutionary Biology 

Geology Geology 

Geophysics Geochemistry & Geophysics 

Cellular and Developmental Biology (Developmental Biology)(Cell Biology) 

Cellular and Molecular Neuroscience 
(Neurosciences), (Multidisciplinary) 

Medical Physiology and Metabolism Endocrinology & Metabolism 

Plant, Soil, and Microbial Sciences (Plant Sciences) (Transplantation) (Soil Sciences) 

Genetics Genetics & Heredity 

Environmental Sciences and Ecology (Environmental Sciences) (Environmental Studies) (Ecology) 

Social and Political Sciences 
(Social Sciences, Mathematical Models) (Social Sciences, Biomedical) (Social Sciences, 

Intedesciplinary) (Politics & Policy) (Political Science) 
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Table S10. Summary of matching algorithm outcomes for NAS members. 

Type Fraction of NAS Members 

Unique Author ID and 𝑎̂ available 0.45 

Several Author ID 0.15 

Less than 10 Publications 0.08 

Unique Author ID and 𝑎̂ not available 0.21 

No match found – (with name, field, and/or 

affiliation) 
0.07 

Author ID does not have more than 30% of his/her 

papers in the listed primary/secondary field 
0.02 
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Table S11. Median rank of NAS members in their corresponding cohort based on numerous different 

productivity indices, including all those in the main text and the additional measures defined in Table S7.  

Index 

Median rank  

(per-paper impact rank) 

Median Rank 

(per-paper impact and paper count) 

Trueba-Guerrero Index 0.73 0.78 

Proportional Index 0.81 0.84 

Arithmetic Index 0.79 0.82 

Geometric Index 0.82 0.82 

Harmonic 0.76 0.79 

Golden p-index 0.74 0.78 

Lp-index  0.82 0.84 

First Author 0.76 0.77 

h-index -- 0.83 

i10 - index -- 0.74 

solo 0.84 0.86 

all 0.94 0.98 

pp 0.92 0.98 

𝑎̂ 0.97 0.99 

 


